Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Physics: Quantum Physics
Published Physicists arrange atoms in extremely close proximity



Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.
Published Scientists test for quantum nature of gravity



A new study reports on a deep new probe into the interface between the theories of gravity and quantum mechanics, using ultra-high energy neutrino particles detected by a particle detector set deep into the Antarctic glacier at the south pole.
Published Significant new discovery in teleportation research -- Noise can improve the quality of quantum teleportation



Researchers succeeded in conducting an almost perfect quantum teleportation despite the presence of noise that usually disrupts the transfer of quantum state.
Published The big quantum chill: Scientists modify common lab refrigerator to cool faster with less energy



Scientists have dramatically reduced the time and energy required to chill materials to temperatures near absolute zero. Their prototype refrigerator could prove a boon for the burgeoning quantum industry, which widely uses ultracold materials.
Published Researchers unlock potential of 2D magnetic devices for future computing



A research team has created an innovative method to control tiny magnetic states within ultrathin, two-dimensional van der Waals magnets -- a process akin to how flipping a light switch controls a bulb.
Published Astronomers' simulations support dark matter theory



Computer simulations by astronomers support the idea that dark matter -- matter that no one has yet directly detected but which many physicists think must be there to explain several aspects of the observable universe -- exists, according to the researchers.
Published Atomic nucleus excited with laser: a breakthrough after decades



For the first time, the state of an atomic nucleus was switched with a laser. For decades, physicists have been looking for such a nuclear transition -- now it has been found. This opens up a new field of research with many technological applications. Now, nuclei can be used for extremely precise measurements. For example, a nuclear clock could be built that could measure time more precisely than the best atomic clocks available today.
Published Physicists show that light can generate electricity even in translucent materials



Some materials are transparent to light of a certain frequency. When such light is shone on them, electrical currents can still be generated, contrary to previous assumptions. Scientists have managed to prove this.
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published Scientists tune the entanglement structure in an array of qubits



A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.
Published Hurricanes jeopardize carbon-storing New England forests



Many American companies are relying on carbon offsets to reduce their carbon footprint, especially those who have pledged to achieve 'net-zero emissions.' Sequestering carbon in forests is an example of a nature-based solution that is being used to address climate change, but a new study suggests that hurricanes could pose a risk. The results show that a single hurricane may wipe out 5% to 10% of total above-ground forest carbon, through tree damage, in New England.
Published Diversity and productivity go branch-in-branch



Researchers found that forests with higher trait diversity not only adapt better to climate change but may also thrive. The study unveiled how tree functional trait diversity plays a pivotal role in mitigating climate warming. In the face of environmental stress, these diverse trees have been shown to maintain higher productivity levels, in contrast to monoculture forests.
Published Condensed matter physics: Novel one-dimensional superconductor



In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.
Published Lead-vacancy centers in diamond as building blocks for large-scale quantum networks



A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.
Published World's chocolate supply threatened by devastating virus



A rapidly spreading virus threatens the health of the cacao tree and the dried seeds from which chocolate is made, jeopardizing the global supply of the world's most popular treat. Researchers have developed a new strategy: using mathematical data to determine how far apart farmers can plant vaccinated trees to prevent mealybugs from jumping from one tree to another and spreading the virus.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published Perfecting the view on a crystal's imperfection



Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.
Published New beta-decay measurements in mirror nuclei pin down the weak nuclear force



Scientists have gained insights into the weak nuclear force from new, more sensitive studies of the beta decays of the 'mirror' nuclei lithium-8 and boron-8. The weak nuclear force drives the process of nuclear beta decay. The research found that the properties of the beta decays of lithium-8 and boron-8 are in perfect agreement with the predictions of the Standard Model.
Published Compact quantum light processing



An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.