Showing 20 articles starting at article 481
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Physics: Quantum Physics
Published A nanocrystal shines on and off indefinitely



Optical probes have led to numerous breakthroughs in applications like optical memory, nanopatterning, and bioimaging, but existing options have limited lifespans and will eventually 'photobleach.' New work demonstrates a promising, longer-lasting alternative: ultra-photostable avalanching nanoparticles that can turn on and off indefinitely in response to near-infrared light from simple lasers.
Published Study leads to milestone advances in understanding lethal bronzing of palm trees



Scientists have identified a key chemical associated with lethal bronzing (LB) infected palm trees. LB is a bacterial disease that kills more than 20 species of palm trees in the Southern United States and Caribbean and has been devastating the Florida green industries for nearly two decades.
Published Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons



Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).
Published 'A blessing in disguise!' Physics turning bad into good



Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.
Published Forging a dream material with semiconductor quantum dots



Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.
Published Snapshots of photoinjection



Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.
Published Quantum scientists accurately measure power levels one trillion times lower than usual



Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.
Published Quantum matter breakthrough: Tuning density waves



Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.
Published How a drought affects trees depends on what's been holding them back



Droughts can be good for trees. Certain trees, that is. Contrary to expectation, sometimes a record-breaking drought can increase tree growth. Why and where this happens is the subject of a new article.
Published Uncovering universal physics in the dynamics of a quantum system



New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium.
Published Curved spacetime in a quantum simulator



The connection between quantum physics and the theory of relativity is extremely hard to study. But now, scientists have set up a model system, which can help: Quantum particles can be tuned in such a way that the results can be translated into information about other systems, which are much harder to observe. This kind of 'quantum simulator' works very well and can lead to new insights about the nature of relativity and quantum physics.
Published With new experimental method, researchers probe spin structure in 2D materials for first time



In the study, a team of researchers describe what they believe to be the first measurement showing direct interaction between electrons spinning in a 2D material and photons coming from microwave radiation.
Published Researcher uses artificial intelligence to discover new materials for advanced computing



Researchers have identified novel van der Waals (vdW) magnets using cutting-edge tools in artificial intelligence (AI). In particular, the team identified transition metal halide vdW materials with large magnetic moments that are predicted to be chemically stable using semi-supervised learning. These two-dimensional (2D) vdW magnets have potential applications in data storage, spintronics, and even quantum computing.
Published Physicists discover 'stacked pancakes of liquid magnetism'



Physicists have discovered stacked pancakes of 'liquid' magnetism that may account for the strange electronic behavior of some layered helical magnets.
Published Quantum electrodynamics verified with exotic atoms



Adapting a detector developed for space X-ray observation, researchers have successfully verify strong-field quantum electrodynamics with exotic atoms.
Published Preserving pine forests by understanding beetle flight



Researchers study the flight performance of the mountain pine beetle from a fluid mechanics and an entomological perspective. Understanding these aspects of the insect's flight could improve estimates of its spread through the environment and preserve pine forests. To examine insect flight, the team employed a type of model previously used for idealized airfoils. They showed that it can be successfully applied to multiple individual animals across biological sex, insect age, and body size. In doing so, the model can predict how these factors impact flight characteristics.
Published Beetles and their biodiversity in dead wood



Which energy type promotes the biodiversity of beetles living in dead wood in the forest? That depends entirely on where the beetles are in the food chain.
Published Exploring the underground connections between trees



Fungal networks interconnecting trees in a forest is a key factor that determines the nature of forests and their response to climate change. These networks have also been viewed as a means for trees to help their offspring and other tree-friends, according to the increasingly popular 'mother-tree hypothesis'. An international group of researchers re-examined the evidence for and against this hypothesis in a new study.
Published Leaky-wave metasurfaces: A perfect interface between free-space and integrated optical systems



Researchers have developed a new class of integrated photonic devices -- 'leaky-wave metasurfaces' -- that convert light initially confined in an optical waveguide to an arbitrary optical pattern in free space. These are the first to demonstrate simultaneous control of all four optical degrees of freedom. Because they're so thin, transparent, and compatible with photonic integrated circuits, they can be used to improve optical displays, LIDAR, optical communications, and quantum optics.
Published Symmetric graphene quantum dots for future qubits



Quantum dots in semiconductors such as silicon or gallium arsenide have long been considered hot candidates for hosting quantum bits in future quantum processors. Scientists have now shown that bilayer graphene has even more to offer here than other materials. The double quantum dots they have created are characterized by a nearly perfect electron-hole-symmetry that allows a robust read-out mechanism -- one of the necessary criteria for quantum computing.