Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Paleontology: Climate
Published Nature and animal emojis don't accurately represent natural biodiversity



The current emoji library doesn't accurately represent the 'tree of life' and the breadth of biodiversity seen in nature according to a new analysis. A team of conservation biologists categorized emojis related to nature and animals and mapped them onto the phylogenetic tree of life. They found that animals are well represented by the current emoji catalog, whereas plants, fungi, and microorganisms are poorly represented. Within the animal kingdom, vertebrates were over-represented while arthropods were underrepresented with respect to their actual biodiversity.
Published Geoscientists map changes in atmospheric carbon dioxide over past 66 million years



An international consortium of geoscientists has reconstructed atmosphereric levels of carbon dioxide going back 66 million years using proxies in the geoloogical record. Today's concenteration, 420 parts per million, is higher than it's ever been in 14 million years.
Published Climate change shown to cause methane to be released from the deep ocean



New research has shown that fire-ice -- frozen methane which is trapped as a solid under our oceans -- is vulnerable to melting due to climate change and could be released into the sea.
Published Limitations of asteroid crater lakes as climate archives



In southern Germany just north of the Danube, there lies a large circular depression between the hilly surroundings: the Nördlinger Ries. Almost 15 million years ago, an asteroid struck this spot. Today, the impact crater is one of the most useful analogues for asteroid craters on early Mars. Studying the deposits of the former lake that formed in the crater is particularly informative. These deposits have been of great interest ever since NASA began exploring Martian craters for signs of water and life on Mars.
Published More than a meteorite: New clues about the demise of dinosaurs



What wiped out the dinosaurs? A meteorite plummeting to Earth is only part of the story, a new study suggests. Climate change triggered by massive volcanic eruptions may have ultimately set the stage for the dinosaur extinction, challenging the traditional narrative that a meteorite alone delivered the final blow to the ancient giants.
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Public gardens contribute to invasives problem



Some nonnative plants cultivated in public gardens or arboretums are escaping to become invasive in wild forests.
Published Aging societies more vulnerable to collapse



Societies and political structures, like the humans they serve, appear to become more fragile as they age, according to an analysis of hundreds of pre-modern societies. A new study, which holds implications for the modern world, provides the first quantitative support for the theory that the resilience of political states decreases over time.
Published Antarctica's ancient ice sheets foreshadow dynamic changes in Earth's future



Identifying how and why Antarctica's major ice sheets behaved the way they did in the early Miocene could help inform understanding of the sheets' behavior under a warming climate. Together, the ice sheets lock a volume of water equivalent to more than 50 meters of sea level rise and influence ocean currents that affect marine food webs and regional climates. Their fate has profound consequences for life nearly everywhere on Earth.
Published Decoding past climates through dripstones



A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.
Published 600 years of tree rings reveal climate risks in California



The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published Landscape dynamics determine the evolution of biodiversity on Earth



A landmark study into the geological timescale distribution of sediment and nutrients over 500 million years shows that species biodiversity on Earth is driven by landscape dynamics.
Published Deoxygenation levels similar to today's played a major role in marine extinctions during major past climate change event



Scientists have made a surprising discovery that sheds new light on the role that oceanic deoxygenation (anoxia) played in one of the most devastating extinction events in Earth's history. Their finding has implications for current day ecosystems -- and serves as a warning that marine environments are likely more fragile than apparent. New research, published today in leading international journal Nature Geosciences, suggests that oceanic anoxia played an important role in ecosystem disruption and extinctions in marine environments during the Triassic--Jurassic mass extinction, a major extinction event that occurred around 200 million years ago. Surprisingly however, the study shows that the global extent of euxinia (an extreme form of de-oxygenated conditions) was similar to the present day.
Published The Fens of eastern England once held vast woodlands



The Fens of eastern England, a low-lying, extremely flat landscape dominated by agricultural fields, was once a vast woodland filled with huge yew trees, according to new research. Scientists have studied hundreds of tree trunks, dug up by Fenland farmers while ploughing their fields. The team found that most of the ancient wood came from yew trees that populated the area between four and five thousand years ago.
Published Looking for 'LUCA' and the timing of cellular evolution



LUCA, the 'last universal common ancestor' of all living organisms, lived 4.32 to at most 4.52 billion years ago. What LUCA looked like is unknown, but it must have been a cell with among others ribosomal proteins and an ATP synthase.
Published Forest modeling shows which harvest rotations lead to maximum carbon sequestration



Forest modeling shows that a site's productivity -- an indicator of how fast trees grow and how much biomass they accumulate -- is the main factor that determines which time period between timber harvests allows for maximum above-ground carbon sequestration.
Published Deep dive on sea level rise: New modelling gives better predictions on Antarctic ice sheet melt



Using historical records from around Australia, an international team of researchers have put forward the most accurate prediction to date of past Antarctic ice sheet melt, providing a more realistic forecast of future sea level rise. The Antarctic ice sheet is the largest block of ice on earth, containing over 30 million cubic kilometers of water. Hence, its melting could have a devasting impact on future sea levels. To find out just how big that impact might be, the research team turned to the past.
Published Plants that survived dinosaur extinction pulled nitrogen from air



Ancient cycad lineages that survived the extinction of the dinosaurs may have done so by relying on symbiotic bacteria in their roots to fix atmospheric nitrogen. The finding came from an effort to understand ancient atmospheres, but became an insight into plant evolution instead.
Published Diverse forests hold huge carbon potential, as long as we cut emissions



New study estimates that natural forest recovery could capture approximately 226 Gigatonnes (Gt) of carbon, but only if we also reduce greenhouse gas emissions. Achieving these results requires community-driven efforts to conserve and restore biodiversity. In brief: Forests have the potential to capture 226 Gigatonnes (Gt) of carbon in areas where they would naturally exist. This forest potential can only be achieved alongside emissions cuts. Sixty-one percent of the forest potential can be achieved by protecting existing forests and allowing them to regrow to maturity. Thirty-nine percent can be achieved by reconnecting fragmented landscapes through community-driven ecosystem restoration and management. A natural diversity of species is needed to maximize the forest carbon potential.
Published Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken



Experts predict 'catastrophic ecosystem collapse' of UK forests within the next 50 years if action not taken. Other threats to UK forests include competition with society for water, viral diseases, and extreme weather affecting forest management.