Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Space: Cosmology
Published Tag team of the James Webb Space Telescope and ALMA captures the core of the most distant galaxy protocluster


An international research team has used the James Webb Space Telescope and the Atacama Large Millimeter/submillimeter Array to observe the most distant galaxy protocluster to date, 13.14 billion light-years away. The team has successfully captured the 'core region' of the galaxy protocluster, which corresponds to a metropolitan area with a particularly high number density of galaxies. The team has revealed that many galaxies are concentrated in a small area and that the growth of galaxies is accelerated. Furthermore, the team used simulations to predict the future of the metropolitan area and found that the region will merge into one larger galaxy within tens of millions of years. These results are expected to provide important clues regarding the birth and growth of galaxies.
Published New recipes for origin of life may point way to distant, inhabited planets



Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.
Published Crucial third clue to finding new diamond deposits


Researchers studying diamond-rich rocks from Western Australia's Argyle volcano have identified the missing third key ingredient needed to bring valuable pink diamonds to the Earth's surface where they can be mined, which could greatly help in the global hunt for new deposits.
Published Brilliant galaxies of early universe


Scientists have used data from the James Webb Space Telescope (JWST) as part of the Cosmic Evolution Early Release Science (CEERS) Survey to change the way we think about the universe and its distant galaxies. Astronomers authored a paper confirming very bright galaxies in the early universe, while also disproving the identification of what would have been the most distant galaxy ever found.
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.
Published Matter comprises of 31% of the total amount of matter and energy in the universe


One of the most interesting and important questions in cosmology is, 'How much matter exists in the universe?' An international team has now succeeded in measuring the total amount of matter for the second time. The team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy.
Published Discovery of two potential Polar Ring galaxies suggests these stunning rare clusters might be more common than previously believed


These new detections suggest polar ring galaxies might be more common than previously believed.
Published Dark matter halos measured around ancient quasars


At the center of every galaxy is a supermassive black hole. Beyond a certain size, these become active, emitting huge amounts of radiation, and are then called quasars. It is thought these are activated by the presence of massive dark matter halos (DMH) surrounding the galaxy, directing matter towards the center, feeding the black hole. A team has now surveyed hundreds of ancient quasars and found this behavior is very consistent throughout history. This is surprising, as many large-scale processes show variation throughout the life of the universe, so the mechanism of quasar activation could have implications for the evolution of the entire universe.
Published The universe caught suppressing cosmic structure growth


As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.
Published Study hints at the existence of the closest black holes to Earth in the Hyades star cluster


A new article hints at the existence of several black holes in the Hyades cluster -- the closest open cluster to our solar system -- which would make them the closest black holes to Earth ever detected.
Published New cosmological constraints on the nature of dark matter


New research has revealed the distribution of dark matter in never before seen detail, down to a scale of 30,000 light-years. The observed distribution fluctuations provide better constraints on the nature of dark matter.
Published Furthest ever detection of a galaxy's magnetic field


Astronomers have detected the magnetic field of a galaxy so far away that its light has taken more than 11 billion years to reach us: we see it as it was when the Universe was just 2.5 billion years old. The result provides astronomers with vital clues about how the magnetic fields of galaxies like our own Milky Way came to be.
Published Vast bubble of galaxies discovered, given Hawaiian name



The immense bubble is 820 million light years from Earth and believed to be a fossil-like remnant of the birth of the universe.
Published Two out of three volcanoes are little-known. How to predict their eruptions?



What is the risk of a volcano erupting? To answer this question, scientists need information about its underlying internal structure. However, gathering this data can take several years of fieldwork, analyses and monitoring, which explains why only 30% of active volcanoes are currently well documented. A team has developed a method for rapidly obtaining valuable information. It is based on three parameters: the height of the volcano, the thickness of the layer of rock separating the volcano's reservoir from the surface, and the average chemical composition of the magma.
Published Quantum discovery offers glimpse into other-worldly realm



Experiments promote a curious flipside of decaying monopoles: A reality where particle physics is quite literally turned on its head
Published How a cup of water can unlock the secrets of our Universe



A researcher made a discovery that could change our understanding of the universe. He reveals that there is a range in which fundamental constants can vary, allowing for the viscosity needed for life processes to occur within and between living cells. This is an important piece of the puzzle in determining where these constants come from and how they impact life as we know it.
Published Atmospheric circulation weakens following volcanic eruptions



An international team of scientists found that volcanic eruptions can cause the Pacific Walker Circulation to temporarily weaken, inducing El Niño-like conditions. The results provide important insights into how El Niño and La Niña events may change in the future.
Published Rewriting the past and future of the universe



New research has improved the accuracy of the parameters governing the expansion of the Universe. More accurate parameters will help astronomers determine how the Universe grew to its current state, and how it will evolve in the future.
Published New type of star gives clues to mysterious origin of magnetars



Magnetars are the strongest magnets in the Universe. These super-dense dead stars with ultra-strong magnetic fields can be found all over our galaxy but astronomers don't know exactly how they form. Now, using multiple telescopes around the world, researchers have uncovered a living star that is likely to become a magnetar. This finding marks the discovery of a new type of astronomical object -- massive magnetic helium stars -- and sheds light on the origin of magnetars.
Published Using supernovae to study neutrinos' strange properties


In a new study, researchers have taken an important step toward understanding how exploding stars can help reveal how neutrinos, mysterious subatomic particles, secretly interact with themselves.