Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Space: Cosmology
Published Extinct offshore volcano could store gigatons of carbon dioxide



A new study concludes that an extinct volcano off the shore of Portugal could store as much as 1.2-8.6 gigatons of carbon dioxide, the equivalent of ~24-125 years of the country's industrial emissions. For context, in 2022 a total of 42.6 megatons (0.0426 gigatons) of carbon dioxide was removed from the atmosphere by international carbon capture and storage efforts, according to the Global CCS Institute. The new study suggests that carbon capture and storage in offshore underwater volcanoes could be a promising new direction for removal and storage of much larger volumes of the greenhouse gas from the atmosphere.
Published Eruption of Tonga underwater volcano found to disrupt satellite signals halfway around the world



Researchers found that the Hunga-Tonga eruption was associated with the formation of an equatorial plasma bubble in the ionosphere, a phenomenon associated with disruption of satellite-based communications. Their findings also suggest that a long-held atmospheric model should be revised.
Published An X-ray look at the heart of powerful quasars



Researchers have observed the X-ray emission of the most luminous quasar seen in the last 9 billion years of cosmic history, known as SMSS J114447.77-430859.3, or J1144 for short. The new perspective sheds light on the inner workings of quasars and how they interact with their environment.
Published Radio signal reveals supernova origin



Astronomers reveal the origin of a thermonuclear supernova explosion. Strong emission lines of helium and the first detection of such a supernova in radio waves show that the exploding white dwarf star had a helium-rich companion.
Published Astronomers reveal the largest cosmic explosion ever seen



Astronomers have uncovered the largest cosmic explosion ever witnessed. The explosion is more than ten times brighter than any known supernova and three times brighter than the brightest tidal disruption event, where a star falls into a supermassive black hole.
Published Researchers find new approach to explore earliest universe dynamics with gravitational waves



Researchers have discovered a new generic production mechanism of gravitational waves generated by a phenomenon known as oscillons.
Published Hidden supermassive black holes brought to life by galaxies on collision course



Astronomers have found that supermassive black holes obscured by dust are more likely to grow and release tremendous amounts of energy when they are inside galaxies that are expected to collide with a neighbouring galaxy.
Published Celestial monsters at the origin of globular clusters



Globular clusters are the most massive and oldest star clusters in the Universe. They can contain up to 1 million of them. The chemical composition of these stars, born at the same time, shows anomalies that are not found in any other population of stars. Explaining this specificity is one of the great challenges of astronomy. After having imagined that supermassive stars could be at the origin, a team believes it has discovered the first chemical trace attesting to their presence in globular proto-clusters, born about 440 million years after the Big Bang.
Published Measurement of the Universe's expansion rate weighs in on a longstanding debate in physics and astronomy



A team used a first-of-its-kind technique to measure the expansion rate of the Universe, providing insight that could help more accurately determine the Universe's age and help physicists and astronomers better understand the cosmos.
Published Neutron star's X-rays reveal 'photon metamorphosis'



A 'beautiful effect' predicted by quantum electrodynamics (QED) can explain the puzzling first observations of polarized X-rays emitted by a magnetar -- a neutron star featuring a powerful magnetic field, according to an astrophysicist.
Published Astronomers find distant gas clouds with leftovers of the first stars



Using ESO's Very Large Telescope (VLT), researchers have found for the first time the fingerprints left by the explosion of the first stars in the Universe. They detected three distant gas clouds whose chemical composition matches what we expect from the first stellar explosions. These findings bring us one step closer to understanding the nature of the first stars that formed after the Big Bang.
Published Most massive touching stars ever found will eventually collide as black holes



A new study looked at a known binary star (two stars orbiting around a mutual center of gravity), analyzing starlight obtained from a range of ground- and space-based telescopes. The researchers found that the stars, located in a neighboring dwarf galaxy called the Small Magellanic Cloud, are in partial contact and swapping material with each other, with one star currently 'feeding' off the other. They orbit each other every three days and are the most massive touching stars (known as contact binaries) yet observed.
Published Astronomers solve the 60-year mystery of quasars -- the most powerful objects in the Universe



Scientists have unlocked one of the biggest mysteries of quasars -- the brightest, most powerful objects in the Universe -- by discovering that they are ignited by galaxies colliding.
Published Webb reveals early-universe prequel to huge galaxy cluster



Every giant was once a baby, though you may never have seen them at that stage of their development. NASA's James Webb Space Telescope has begun to shed light on formative years in the history of the universe that have thus far been beyond reach: the formation and assembly of galaxies. For the first time, a protocluster of seven galaxies has been confirmed at a distance that astronomers refer to as redshift 7.9, or a mere 650 million years after the big bang. Based on the data collected, astronomers calculated the nascent cluster's future development, finding that it will likely grow in size and mass to resemble the Coma Cluster, a monster of the modern universe.
Published Making better measurements of the composition of galaxies



A study using data from telescopes on Earth and in the sky resolves a problem plaguing astronomers working in the infrared and could help make better observations of the composition of the universe with the James Webb Space Telescope and other instruments.
Published Metal-poor stars are more life-friendly



A star's chemical composition strongly influences the ultraviolet radiation it emits into space and thus the conditions for the emergence of life in its neighborhood.
Published 2022 Tongan volcanic explosion was largest natural explosion in over a century, new study finds



The 2022 eruption of a submarine volcano in Tonga was more powerful than the largest U.S. nuclear explosion, according to a new study. The 15-megaton volcanic explosion from Hunga Tonga-Hunga Ha'apai, one of the largest natural explosions in more than a century, generated a mega-tsunami with waves up to 45-meters high (148 feet) along the coast of Tonga's Tofua Island and waves up to 17 meters (56 feet) on Tongatapu, the country's most populated island.
Published James Webb Space Telescope images challenge theories of how universe evolved



Astronomers find that six of the earliest and most massive galaxy candidates observed by the James Webb Space Telescope so far appear to have converted nearly 100% of their available gas into stars, a finding at odds with the reigning model of cosmology.
Published Researchers discover tiny galaxy with big star power using James Webb telescope



Using new observations from the James Webb Space Telescope, astronomers looked more than 13 billion years into the past to discover a unique, minuscule galaxy that could help astronomers learn more about galaxies that were present shortly after the Big Bang.
Published Study re-evaluates hazards and climate impacts of massive underwater volcanic eruptions



Material left on the seafloor by bronze-age underwater volcanic eruptions is helping researchers better understand the size, hazards and climate impact of their parent eruptions, according to new research.