Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geomagnetic Storms, Space: Cosmology
Published The puzzle of the galaxy with no dark matter


New research has found the first evidence of a massive galaxy with no dark matter. The result is a challenge to the current standard model of cosmology.
Published Giant swirling waves at edge of Jupiter's magnetosphere


A team has found that NASA's Juno spacecraft orbiting Jupiter frequently encounters giant swirling waves at the boundary between the solar wind and Jupiter's magnetosphere. The waves are an important process for transferring energy and mass from the solar wind, a stream of charged particles emitted by the Sun, to planetary space environments.
Published James Webb Telescope catches glimpse of possible first-ever 'dark stars'


Three bright objects initially identified as galaxies in observations from the James Webb Space Telescope might actually represent an exotic new form of star. If confirmed, the discovery would also shed light on the nature of dark matter.
Published Webb celebrates first year of science with close-up on birth of sun-like stars



From our cosmic backyard in the solar system to distant galaxies near the dawn of time, NASA's James Webb Space Telescope has delivered on its promise of revealing the universe like never before in its first year of science operations. To celebrate the completion of a successful first year, NASA has released Webb's image of a small star-forming region in the Rho Ophiuchi cloud complex.
Published Reinventing cosmology: New research puts age of universe at 26.7 -- not 13.7 -- billion years



Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called 'impossible early galaxy problem.'
Published Webb Telescope detects most distant active supermassive black hole



Researchers have discovered the most distant active supermassive black hole to date with the James Webb Space Telescope (JWST). The galaxy, CEERS 1019, existed about 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe.
Published Webb locates dust reservoirs in two supernovae



Researchers have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.
Published Quasar 'clocks' show Universe was five times slower soon after the Big Bang



Quasars are the supermassive black holes at the centres of early galaxies. Scientists have unlocked their secrets to use them as 'clocks' to measure time near the beginning of the universe.
Published Astrophysicists propose a new way of measuring cosmic expansion: Lensed gravitational waves



The universe is expanding; we've had evidence of that for about a century. But just how quickly celestial objects are receding from each other is still up for debate.
Published First 'ghost particle' image of Milky Way



Scientists have revealed a uniquely different image of our galaxy by determining the galactic origin of thousands of neutrinos -- invisible 'ghost particles' which exist in great quantities but normally pass straight through Earth undetected. The neutrino-based image of the Milky Way is the first of its kind: a galactic portrait made with particles of matter rather than electromagnetic energy.
Published Earliest strands of the cosmic web



Galaxies are not scattered randomly across the universe. They gather together not only into clusters, but into vast interconnected filamentary structures with gigantic barren voids in between. This 'cosmic web' started out tenuous and became more distinct over time as gravity drew matter together.
Published Gravitational waves from colossal black holes found using 'cosmic clocks'



You can't see or feel it, but everything around you -- including your own body -- is slowly shrinking and expanding. It's the weird, spacetime-warping effect of gravitational waves passing through our galaxy. New results are the first evidence of the gravitational wave background -- a sort of soup of spacetime distortions pervading the entire universe and long predicted to exist by scientists.
Published Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe



For the first time, the James Webb Space Telescope has revealed starlight from two massive galaxies hosting actively growing black holes -- quasars -- seen less than a billion years after the Big Bang.
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Never-before-seen way to annihilate a star



Astronomers studying a powerful gamma-ray burst, may have detected a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.
Published Astronomers discover new link between dark matter and clumpiness of the universe



Researchers reveal a theoretical breakthrough that may explain both the nature of invisible dark matter and the large-scale structure of the universe known as the cosmic web. The result establishes a new link between these two longstanding problems in astronomy, opening new possibilities for understanding the cosmos. The research suggests that the 'clumpiness problem,' which centres on the unexpectedly even distribution of matter on large scales throughout the cosmos, may be a sign that dark matter is composed of hypothetical, ultra-light particles called axions. The implications of proving the existence of hard-to-detect axions extend beyond understanding dark matter and could address fundamental questions about the nature of the universe itself.
Published DESI early data release holds nearly two million objects



The first batch of data from the Dark Energy Spectroscopic Instrument is now available for researchers to explore. Taken during the experiment's 'survey validation' phase, the data include distant galaxies and quasars as well as stars in our own Milky Way.
Published Astronomers discover supernova explosion through rare 'cosmic magnifying glasses'



An international team of scientists recently discovered an exceptionally rare gravitationally lensed supernova, which the team named 'SN Zwicky.' Located more than 4 billion light years away, the supernova was magnified nearly 25 times by a foreground galaxy acting as a lens. The discovery presents a unique opportunity for astronomers to learn more about the inner cores of galaxies, dark matter and the mechanics behind universe expansion.
Published New study identifies mechanism driving the sun's fast wind



Researchers used data from NASA's Parker Solar Probe to explain how the solar wind is capable of surpassing speeds of 1 million miles per hour. They discovered that the energy released from the magnetic field near the sun's surface is powerful enough to drive the fast solar wind, which is made up of ionized particles -- called plasma -- that flow outward from the sun.
Published Webb Space Telescope detects universe's most distant complex organic molecules



Researchers have detected complex organic molecules in a galaxy more than 12 billion light-years away from Earth -- the most distant galaxy in which these molecules are now known to exist. Thanks to the capabilities of the recently launched James Webb Space Telescope and careful analyses from the research team, a new study lends critical insight into the complex chemical interactions that occur in the first galaxies in the early universe.