Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Space: Cosmology
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Scientists unravel drivers of the global zinc cycle in our oceans, with implications for a changing climate



The understanding of the global zinc cycle in our oceans has important implications in the context of warming oceans. A warmer climate increases erosion, leading to more dust in the atmosphere and consequently more dust being deposited into the oceans. More dust means more scavenging of zinc particles, leading to less zinc being available to sustain phytoplankton and other marine life, thereby diminishing the oceans' ability to absorb carbon.
Published Ancient ocean slowdown warns of future climate chaos



When it comes to the ocean's response to global warming, we're not in entirely uncharted waters. A new study shows that episodes of extreme heat in Earth's past caused the exchange of waters from the surface to the deep ocean to decline.
Published Dolphins with elevated mercury levels in Florida and Georgia



Scientists found elevated mercury levels in dolphins in the U.S. Southeast. The highest levels were found in dolphins in Florida's St. Joseph and Choctawhatchee Bays. Researchers study dolphins because they are considered a sentinel species for oceans and human health. Like us, they are high up in the food chain, live long lives, and share certain physiological traits. Some of their diet is most vulnerable to mercury pollution and is also eaten by people.
Published NASA's Roman mission gets cosmic 'sneak peek' from supercomputers



Researchers used supercomputers to create nearly 4 million simulated images depicting the cosmos.
Published Mobile monitoring for an airborne carcinogen in Louisiana's 'Cancer Alley'



Louisiana's southeastern corridor is sometimes known colloquially as 'Cancer Alley' for its high cancer incidence rates connected to industrial air pollution. Most of the region's air pollution-related health risks are attributed to ethylene oxide, a volatile compound used to make plastics and sterilize medical equipment. Researchers measured concerning levels of ethylene oxide in this area with mobile optical instruments, a technique they say could improve health risk assessments.
Published Are plants intelligent? It depends on the definition



Goldenrod can perceive other plants nearby without ever touching them, by sensing far-red light ratios reflected off leaves. When goldenrod is eaten by herbivores, it adapts its response based on whether or not another plant is nearby. Is this kind of flexible, real-time, adaptive response a sign of intelligence in plants?
Published Significant increase in nitrous-oxide emissions from human activities, jeopardizing climate goals



Emissions of nitrous-oxide (N2O) -- a potent greenhouse gas -- have continued to rise unabated over the past four decades, according to an international team of scientists.
Published Wind from black holes may influence development of surrounding galaxies



Clouds of gas in a distant galaxy are being pushed faster and faster -- at more than 10,000 miles per second -- out among neighboring stars by blasts of radiation from the supermassive black hole at the galaxy's center. It's a discovery that helps illuminate the way active black holes can continuously shape their galaxies by spurring on or snuffing out the development of new stars.
Published How do supermassive black holes get super massive?



By combining forefront X-ray observations with state-of-the-art supercomputer simulations of the buildup of galaxies over cosmic history, researchers have provided the best modeling to date of the growth of the supermassive black holes found in the centers of galaxies.
Published Scientists spot more Milky Way-like galaxies in early universe



Scientists are peering into the past and uncovering new clues about the early universe. Since light takes a long time to travel through space, they are now able to see how galaxies looked billions of years ago. The astronomers have discovered that spiral galaxies were more common in the early universe than previously thought. The scientists found that nearly 30% of galaxies have a spiral structure about 2 billion years after the universe formed. The discovery provides a significant update to the universe's origin story as previously told using data from NASA's Hubble Space Telescope.
Published Soil bacteria respire more CO2 after sugar-free meals



Researchers tracked how plant matter moves through bacteria's metabolism. Microbes respire three times as much carbon dioxide (CO2) from non-sugar carbons from lignin compared to sugar from cellulose. Although microbes consume both types of plant matter at the same time, each type enters a different metabolic pathway. Findings could improve predictions of how climate-dependent changes in soil carbon types will affect microbial CO2 production.
Published Origins of fast radio bursts come into focus through polarized light



What scientists previously thought about where Fast Radio Bursts (FRBs) come from is just the tip of the iceberg. A new study details the properties of polarized light from 128 non-repeating FRBs and reveals mysterious cosmic explosions that originated in far-away galaxies, similar to our own Milky Way.
Published Scientists unlock secrets of how archaea, the third domain of life, makes energy



An international scientific team has redefined our understanding of archaea, a microbial ancestor to humans from two billion years ago, by showing how they use hydrogen gas. The findings explain how these tiny lifeforms make energy by consuming and producing hydrogen. This simple but dependable strategy has allowed them to thrive in some of Earth's most hostile environments for billions of years.
Published Shaping nanoparticles with enzymes



The selective bond-breaking powers of enzymes bring new versatility for building nanoparticles with a wide range of technical and medical potential.
Published How did a satellite galaxy of the Milky Way come to be?



Crater 2, located approximately 380,000 light years from Earth, is one of the largest satellite galaxies of the Milky Way. Extremely cold and with slow-moving stars, Crater 2 has low surface brightness. How this galaxy originated remains unclear. A team of physicists now offers an explanation.
Published Major milestone in cutting harmful gases that deplete ozone layer and worsen global warming



A new study has revealed significant progress in the drive to reduce levels in the atmosphere of chemicals that destroy Earth's ozone layer, confirming the success of historic regulations limiting their production.
Published New discovery reveals unexpected ocean algae help cool Earth



A common type of ocean algae plays a significant role in producing a massively abundant compound that helps cool the Earth's climate, new research has discovered.
Published NASA's Webb opens new window on supernova science



Peering deeply into the cosmos, NASA's James Webb Space Telescope is giving scientists their first detailed glimpse of supernovae from a time when our universe was just a small fraction of its current age. A team using Webb data has identified 10 times more supernovae in the early universe than were previously known. A few of the newfound exploding stars are the most distant examples of their type, including those used to measure the universe's expansion rate.
Published The solar system may have passed through dense interstellar clouds 2 million years ago, altering Earth's climate



Astrophysicists calculate the likelihood that Earth was exposed to cold, harsh interstellar clouds, a phenomenon not previously considered in geologic climate models.