Showing 20 articles starting at article 361

< Previous 20 articles        Next 20 articles >

Categories: Ecology: Animals, Physics: Quantum Computing

Return to the site home page

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnesium protects tantalum, a promising material for making qubits      (via sciencedaily.com)     Original source 

Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.

Biology: General Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Plants and Animals
Published

Clown anemonefish seem to be counting bars and laying down the law      (via sciencedaily.com)     Original source 

We often think of fish as carefree swimmers in the ocean, reacting to the world around them without much forethought. However, new research suggests that our marine cousins may be more cognizant than we credit them for. Fish may be counting vertical bars on intruders to determine their threat level, and to inform the social hierarchy governing their sea anemone colonies.

Biology: Zoology Ecology: Animals
Published

Relocated songbirds can successfully learn the diversity of song they need to survive      (via sciencedaily.com)     Original source 

New research focused on a population of cirl bunting reintroduced into Cornwall from 2006 as part of a major conservation program. It suggests that if the translocation of nestlings is deemed necessary for conservation purposes, it may not lead to long-term problems for communication and population persistence.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3      (via sciencedaily.com)     Original source 

Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.

Biology: General Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Nature Environmental: Biodiversity Environmental: General Geoscience: Environmental Issues
Published

Climate change threatens older elephants most, jeopardizing African elephants' future      (via sciencedaily.com)     Original source 

A collaborative team of researchers has conducted first-of-its kind research into how global climate change affects African elephants. The work shows that older elephants will have markedly decreased chances of survival, which will not only drastically reduce the species' overall ability to weather the changing climate but will send ripple effects throughout the surrounding landscape. The team has also modeled possible mitigation scenarios.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make breakthrough in quantum materials research      (via sciencedaily.com)     Original source 

Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

Biology: Marine Biology: Zoology Ecology: Animals Ecology: Extinction Ecology: Sea Life
Published

Floating algae a raft for juvenile pelagic fish      (via sciencedaily.com)     Original source 

Floating macroalgal acts as a raft that provides habitat for a diverse array of juvenile oceanic fish a new study has found. The study conducted in the Ningaloo Coast World Heritage Area, Western Australia, revealed that fish were more abundant around macroalgal rafts than in open water, with eleven species of juvenile fishes associated with Sargassum rafts, and one species of both juveniles and adults.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers craft new way to make high-temperature superconductors -- with a twist      (via sciencedaily.com)     Original source 

An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superfluids could share characteristic with common fluids      (via sciencedaily.com)     Original source 

Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists pull off quantum coup      (via sciencedaily.com)     Original source 

Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.

Biology: Biochemistry Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Plants and Animals
Published

First-ever sighting of a live newborn great white      (via sciencedaily.com)     Original source 

Great whites, the largest predatory sharks in the world with the most fatal attacks on humans, are tough to imagine as newborn babies. That is partially because no one has seen one in the wild, it seems, until now.

Biology: Biochemistry Biology: Microbiology Biology: Zoology Ecology: Animals Ecology: Invasive Species
Published

West Nile virus emergence and spread in Europe found to be positively associated with agricultural activities      (via sciencedaily.com)     Original source 

The spread of West Nile virus in Europe is strongly linked to agricultural activities, urbanization, and bird migration, according to new research.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Animals Ecology: Invasive Species Ecology: Trees Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Tiny ant species disrupts lion's hunting behavior      (via sciencedaily.com)     Original source 

Data gathered through years of observation reveal an innocuous-seeming ant is disrupting an ecosystem in East Africa, illustrating the complex web of interactions among ants, trees, lions, zebras and buffaloes.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Shining a light on the hidden properties of quantum materials      (via sciencedaily.com)     Original source 

Certain materials have desirable properties that are hidden and scientists can use light to uncover these properties. Researchers have used an advanced optical technique, based on terahertz time-domain spectroscopy, to learn more about a quantum material called Ta2NiSe5 (TNS).

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers add a 'twist' to classical material design      (via sciencedaily.com)     Original source 

Researchers grew a twisted multilayer crystal structure for the first time and measured the structure's key properties. The twisted structure could help researchers develop next-generation materials for solar cells, quantum computers, lasers and other devices.

Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

What coffee with cream can teach us about quantum physics      (via sciencedaily.com)     Original source 

A new advancement in theoretical physics could, one day, help engineers develop new kinds of computer chips that might store information for longer in very small objects.