Showing 20 articles starting at article 861
< Previous 20 articles Next 20 articles >
Categories: Ecology: Animals, Physics: Optics
Published Detecting a vast diversity of rainforest animals by swabbing their DNA from leaves


Researchers demonstrate that a vast multitude of birds and mammals can be detected by simply swabbing the DNA left behind by animals from leaves. They showcased the power of this approach in an ecosystem that hosts a ton of wildlife and where detecting animals has historically proven extremely challenging -- the tropical rainforest.
Published Want to know how light works? Try asking a mechanic


Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.
Published It all depends on the genetic diversity



New research shows that a single mutation that has immediate effects on plant fitness is maintained over the long term in natural plant populations, despite theories predict the contrary. The researchers located and identified the gene that regulates the amount of an active defense hormone. Mutants in this gene are susceptible to herbivore attack. However, they compensate for impaired defenses through robust genetic networks. When fewer herbivores attack, they even grow faster and produce more offspring.
Published Research team developing a nano-sized force sensor and improving high-precision microscopy technology


Recent research in cell biology highlights groundbreaking results. An international team of researchers have recently established a tool they developed to study the mechanics of the cell. The tool can be used to study the inner forces of the cell, for example, the stretching of the nuclear membrane. The microscopic force sensor, only about 0.00002 mm long, is constructed of exotic ingredients such as spider web protein parts, fluorescent proteins from jellyfish, and antibodies from alpaca. In addition, the multidisciplinary team of researchers has developed further the sensitivity of super-resolution microscopy technique.
Published A new way to identify chiral molecules with light could vastly improve detection efficiency


Researchers have proposed a highly efficient method for detecting molecular chirality using tailored laser fields.
Published Energy and heat transfer: A new 'spin' on ergodicity breaking


Scientists have observed novel ergodicity-breaking in C60, a highly symmetric molecule composed of 60 carbon atoms arranged on the vertices of a 'soccer ball' pattern (with 20 hexagon faces and 12 pentagon faces). Their results revealed ergodicity breaking in the rotations of C60. Remarkably, they found that this ergodicity breaking occurs without symmetry breaking and can even turn on and off as the molecule spins faster and faster. Understanding ergodicity breaking can help scientists design better-optimized materials for energy and heat transfer.
Published Scientists zero in on timing, causes of ice age mammal extinctions in southern California



Radiocarbon dating on bones in the La Brea Tar Pits lead archaeologists to warn that history may be repeating itself.
Published Urban great tits have paler plumage than their forest-living relatives



A new study shows that urban great tits have paler plumage than their countryside counterparts. Since the yellow pigment of the breast feathers of great tits comes from the food they eat, the paler yellow plumage of urban birds indicates that the urban environment affects the entire food chain.
Published Pollutants are important to biodiversity's role in spread of wildlife diseases


Conventional wisdom among ecologists holds that the more species there are inhabiting an ecosystem, the less vulnerable any one species will be to a threat like a parasite. A new study of tadpoles illustrates how overlapping biological and environmental factors can complicate how we value protecting diverse animal communities. The researchers found that environmental pollutants like road salt influence whether increased biodiversity helps or hinders disease outbreaks in wildlife, which can complicate how we value protecting diverse animal communities.
Published It's not just humans: City life is stressful for coyotes, too



Though cars are the biggest threat to coyotes taking up residence in U.S. cities, a new study suggests urban living poses a different kind of hazard to coyote health -- in the form of chronic stress. Researchers examined the concentration of the stress hormone cortisol in the hair of almost 100 coyotes living in the Chicago Metropolitan Area. Results showed that coyotes that lived in the most-developed areas had higher cortisol levels -- a proxy for chronic stress -- than animals living in suburban or natural areas.
Published Scientists trap light inside a magnet


A new study shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.
Published Clever coating turns lampshades into indoor air purifiers


Indoor air pollution may have met its match. Scientists have designed catalyst-coated lampshades that transform indoor air pollutants into harmless compounds. The lampshades work with halogen and incandescent light bulbs, and the team is extending the technology so it will also be compatible with LEDs.
Published Magnonic computing: Faster spin waves could make novel computing systems possible


Research is underway around the world to find alternatives to our current electronic computing technology, as great, electron-based systems have limitations. A new way of transmitting information is emerging from the field of magnonics: instead of electron exchange, the waves generated in magnetic media could be used for transmission, but magnonics-based computing has been (too) slow to date. Scientists have now discovered a significant new method: When the intensity is increased, the spin waves become shorter and faster -- another step towards magnon computing.
Published Switching 'spin' on and off (and up and down) in quantum materials at room temperature


Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.
Published New algorithm captures complex 3D light scattering information from live specimens


Researchers have developed a new algorithm for recovering the 3D refractive index distribution of biological samples that exhibit multiple types of light scattering.
Published Riding a wave to better medical diagnosis


Medical imaging via X-rays, CT scans, MRIs and ultrasounds provide health-care professionals with unique perspectives and a better understanding of what's happening inside a patient's body. Using various forms of waves, these machines can visualize many unseen ailments and diseases. This imaging is beneficial for health-care professionals to make correct diagnoses, but the added insight of spectroscopy provides even more detail. Spectroscopy offers a means to identify biomolecules within specimens through their characteristic signatures for absorption in the electromagnetic spectrum.
Published Chromium replaces rare and expensive noble metals



Expensive noble metals often play a vital role in illuminating screens or converting solar energy into fuels. Now, chemists have succeeded in replacing these rare elements with a significantly cheaper metal. In terms of their properties, the new materials are very similar to those used in the past.
Published Scientists invent smallest known way to guide light


Through a series of innovative experiments, scientists found that a sheet of glass crystal just a few atoms thick could trap and carry light. Not only that, but it was surprisingly efficient and could travel relatively long distances -- up to a centimeter, which is very far in the world of light-based computing.
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Researchers 'film' novel catalyst at work


A novel catalysis scheme enables chemical reactions that were previously virtually impossible. The method is also environmentally friendly and does not require rare and precious metals. The researchers recorded the exact course of the catalysis in a kind of high-speed film. They did this using special lasers that can make processes visible that last only fractions of a billionth of a second. The results allow them to further optimize the catalyst.