Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Nature
Published Researchers design new metal-free porous framework materials



Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.
Published Promethium bound: Rare earth element's secrets exposed



Scientists have uncovered the properties of a rare earth element that was first discovered 80 years ago at the very same laboratory, opening a new pathway for the exploration of elements critical in modern technology, from medicine to space travel.
Published Under extreme impacts, metals get stronger when heated, study finds



Scientists have discovered that when metal is struck by an object moving at a super high velocity, the heat makes the metal stronger. The finding could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or equipment for high-speed manufacturing.
Published New polystyrene recycling process could be world's first to be both economical and energy-efficient



Engineers have modeled a new way to recycle polystyrene that could become the first viable way of making the material reusable.
Published New insights into the degradation dynamics of organic material in the seafloor



Many processes in the deep sea are not yet well understood, and the role of microbial communities in particular is often a big unknown. This includes, for example, how organic material that sinks from the water surface to the ocean floor is metabolised -- an important building block for a better understanding of the global carbon cycle.
Published Ethylene from CO2: Building-kit catalyst



Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.
Published Conservation of nature's strongholds needed to halt biodiversity loss



To achieve global biodiversity targets, conservationists and governments must prioritize the establishment and effective management of large, interconnected protected areas with high ecological integrity, researchers argue in a new essay.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published Regional differences in bird diversity in agroforestry systems



The diversity and ecological functionality of bird communities in tropical agroforestry systems are shaped by the surrounding landscape, in particular the extent and composition of the forest.
Published Improving statistical methods to protect wildlife populations



In human populations, it is relatively easy to calculate demographic trends and make projections of the future if data on basic processes such as births and immigration is known. The data, given by individuals, can be also death and emigration, which subtract. In the wild, on the other hand, understanding the processes that determine wildlife demographic patterns is a highly complex challenge for the scientific community. Although a wide range of methods are now available to estimate births and deaths in wildlife, quantifying emigration and immigration has historically been difficult or impossible in many populations of interest, particularly in the case of threatened species.
Published Researchers introduce programmable materials to help heal broken bones



Natural materials like bone, bird feathers and wood have an intelligent approach to physical stress distribution, despite their irregular architectures. However, the relationship between stress modulation and their structures has remained elusive. A new study that integrates machine learning, optimization, 3D printing and stress experiments allowed engineers to gain insight into these natural wonders by developing a material that replicates the functionalities of human bone for orthopedic femur restoration.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published By listening, scientists learn how a protein folds



By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
Published The impacts of climate change on food production



A new study shows that climate change has led to decreased pollen production from plants and less pollen diversity than previously thought, which could have a significant impact on food production.
Published Digging up good news for microbial studies



Findings indicate that soil stored under refrigerated or air-dried conditions can still retain the needed information for understanding microbial community composition and structure for many years.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues



Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.
Published Cloudy waters causes African fish to develop bigger eyes



Variations in water quality can impact the development of the visual system of one species of African fish, suggests a new study.
Published Expanding on the fundamental principles of liquid movement



We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.
Published Ukraine war caused migrating eagles to deviate from their usual flight plan, study finds



When migrating through Ukraine in 2022, Greater Spotted Eagles were exposed to multiple conflict events that altered their migratory course, according to a new study.