Showing 20 articles starting at article 1061
< Previous 20 articles Next 20 articles >
Categories: Ecology: Sea Life, Physics: General
Published Scientists demonstrate unprecedented sensitivity in measuring time delay between two photons



A team of researchers has demonstrated the ultimate sensitivity allowed by quantum physics in measuring the time delay between two photons. This breakthrough has significant implications for a range of applications, including more feasible imaging of nanostructures, including biological samples, and nanomaterial surfaces, as well as quantum enhanced estimation based on frequency-resolved boson sampling in optical networks.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published Better superconductors with palladium



A new age of superconductors may be about to beginn: In the 1980s, many superconducting materials (called cuprates) were based on copper. Then, nickelates were discovered -- a new kind of superconducting materials based on nickel. But now, scientists from Austria and Japan have shown: There is a 'Goldilocks zone' of superconductivity which can neither be reached with cuprates nor with nickelates. Instead, palladium-based materials ('palladates') could be the solution.
Published Putting hydrogen on solid ground: Simulations with a machine learning model predict a new phase of solid hydrogen



Hydrogen, the most abundant element in the universe, is found everywhere from the dust filling most of outer space to the cores of stars to many substances here on Earth. This would be reason enough to study hydrogen, but its individual atoms are also the simplest of any element with just one proton and one electron.
Published Whales stop by Gold Coast bay for day spa fix with full body scrubs



A new Griffith University study has found that humpback whales will use sandy, shallow bay areas to 'roll' around in sandy substrates to remove dead skin cells on their return journeys south to cooler waters. Using data and footage collected from the tags, whales were observed performing full and side rolls in up to 49m water depth on the sea floor that was lined with fine sand or rubble.
Published Elephant seals drift off to sleep while diving far below the ocean surface



For the first time, scientists have recorded brain activity in a free-ranging, wild marine mammal, revealing the sleep habits of elephant seals during the months they spend at sea. The new findings show that while elephant seals may spend 10 hours a day sleeping on the beach during the breeding season, they average just 2 hours of sleep per day when they are at sea on months-long foraging trips. They sleep for about 10 minutes at a time during deep, 30-minute dives, often spiraling downward while fast asleep, and sometimes lying motionless on the seafloor.
Published The climate crisis and biodiversity crisis can't be approached as two separate things



Anthropogenic climate change has, together with the intensive use and destruction of natural ecosystems through agriculture, fishing and industry, sparked an unprecedented loss of biodiversity that continues to worsen. In this regard, the climate crisis and biodiversity crisis are often viewed as two separate catastrophes. An international team of researchers calls for adopting a new perspective.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate



The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Two qudits fully entangled



Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.
Published African penguins: Climate refugees from a distant past?



Imagine the view from the western coastline of southern Africa during the Last Glacial Maximum (LGM) over twenty thousand years ago: in the distance you would see at least fifteen large islands -- the largest 300 square kilometers in area -- swarming with hundreds of millions of marine birds and penguin colonies.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory



In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published Scientists identify 2022 sea urchin killer



A team of researchers has identified a single-celled organism called a ciliate as the cause of a massive die-off event to a marine animal vital to coral reef health.
Published X-ray analysis sheds new light on prehistoric predator's last meal



We now know more about the diet of a prehistoric creature that grew up to two and a half meters long and lived in Australian waters during the time of the dinosaurs, thanks to the power of x-rays. Researchers used micro-CT scans to peer inside the fossilized stomach remains of a small marine reptile -- a plesiosaur nicknamed 'Eric' after a song from the comedy group Monty Python -- to determine what the creature ate in the lead up to its death.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories



Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published Physicists find unusual waves in nickel-based magnet



Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.