Showing 20 articles starting at article 921
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Invasive Species
Published How the Amazon rainforest is likely to cope with the effect of future drought



A major collaboration involving 80 scientists from Europe and South America has identified the regions of the Amazon rainforest where trees are most likely to face the greatest risk from drier conditions brought about by climate change. Based on the analysis, the scientists predict trees in the western and southern Amazon face the greatest risk of dying. They also warn that previous scientific investigations may have underestimated the impact of drought on the rainforest because those studies focused on the central-eastern part of the forest, which is the least vulnerable to drought.
Published New chemistry can extract virgin-grade materials from wind turbine blades in one process



Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.
Published Abundance of urban honeybees adversely impacts wild bee populations



Researchers argue that the rapid growth in urban honeybee-keeping over the past decade may be negatively impacting nearby wild bee populations. Small bees with limited foraging ranges may be especially at risk, they write.
Published Woodpecker guides post-fire forest management



What's good for the Black-backed Woodpecker is good for restoration of burned California forests. The birds' unique relationship with fire underpins the latest research into improved post-fire management. A study describes a new tool that factors in how fires burn into forest management decisions and turns science into action for wildlife conservation.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published New programmable smart fabric responds to temperature and electricity



A new smart material is activated by both heat and electricity, making it the first ever to respond to two different stimuli.
Published Newly sequenced hornet genomes could help explain invasion success



The genomes of two hornet species, the European hornet and the Asian hornet (or yellow-legged hornet) have been sequenced.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Stab-resistant fabric gains strength from carbon nanotubes, polyacrylate



Fabrics that resist knife cuts can help prevent injuries and save lives. But a sharp enough knife or a very forceful jab can get through some of these materials. Now, researchers report that carbon nanotubes and polyacrylate strengthen conventional aramid to produce lightweight, soft fabrics that provide better protection. Applications include anti-stabbing clothing, helmets and insoles, as well as cut-resistant packaging.
Published Physicists find unusual waves in nickel-based magnet



Perturbing electron spins in a magnet usually results in excitations called 'spin waves' that ripple through the magnet like waves moving across the surface of a pond that's been struck by a pebble. Physicists have now discovered dramatically different excitations called 'spin excitons' that can also 'ripple' through a nickel-based magnet as a coherent wave.
Published Even as temperatures rise, this hydrogel material keeps absorbing moisture



Engineers find the hydrogel polyethylene glycol (PEG) doubles its water absorption as temperatures climb from 25 to 50 C, and could be useful for passive cooling or water harvesting in warm climates.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published The diversity of present tree species is shaped by climate change in the last 21,000 years



A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.
Published Biological invasions as costly as natural disasters



Over the past 40 years, the financial losses caused by biological invasions have been equivalent to those caused by various types of natural disasters, such as earthquakes, floods or storms; however, according to scientists, they are now increasing at a faster pace.
Published Physicists discover transformable nano-scale electronic devices



The nano-scale electronic parts in devices like smartphones are solid, static objects that once designed and built cannot transform into anything else. But physicists have reported the discovery of nano-scale devices that can transform into many different shapes and sizes even though they exist in solid states.
Published Coastal species persist on high seas on floating plastic debris



The high seas have been colonized by a surprising number of coastal marine invertebrate species, which can now survive and reproduce in the open ocean, contributing strongly to the floating community composition. Researchers found coastal species, representing diverse taxonomic groups and life history traits, in the eastern North Pacific Subtropical Gyre on over 70 percent of the plastic debris they examined. Further, the debris carried more coastal species than open ocean species.
Published Researchers successfully establish a strong mechanical bond of immiscible iron and magnesium



Transport relies heavily on steel. But steel is heavy, and scientists are turning to alternatives to lessen the transportation industry's carbon emissions. Magnesium alloys are one such alternative. But developing bonding technology that bonds magnesium alloys with structural steels has been severely limited because magnesium and iron are immiscible. Now, a research group has established a dealloying bonding technology that obtains a strong mechanical bond between iron and magnesium.
Published Processing data at the speed of light



Scientists have developed an extremely small and fast nano-excitonic transistor.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.