Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unconventional interface superconductor could benefit quantum computing      (via sciencedaily.com)     Original source 

A multi-institutional team of scientists has developed a new superconductor material that could potentially be used in quantum computing and be a candidate 'topological superconductor.'

Chemistry: Biochemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Langbeinites show talents as 3D quantum spin liquids      (via sciencedaily.com)     Original source 

A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behavior that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.

Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Kagome superconductor makes waves      (via sciencedaily.com)     Original source 

Superconductivity theory proposed by physics team validated in international experiment: Cooper pairs display wave-like distribution in Kagome metals, enabling new technological applications like superconducting diodes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

AI tackles one of the most difficult challenges in quantum chemistry      (via sciencedaily.com)     Original source 

New research using neural networks, a form of brain-inspired AI, proposes a solution to the tough challenge of modelling the states of molecules.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

Physicists shine new light on ultra-fast atomic processes      (via sciencedaily.com)     Original source 

Scientists report incredibly small time delays in a molecule's electron activity when the particles are exposed to X-rays. To measure these tiny high-speed events, known as attoseconds, researchers used a laser to generate intense X-ray flashes that allowed them to map the inner workings of an atom.

Biology: Biochemistry Biology: Evolutionary Biology: General Ecology: Invasive Species Ecology: Nature
Published

From pets to pests: How domestic rabbits survive the wilderness      (via sciencedaily.com)     Original source 

How do rabbits go from fluffy pets to marauding invaders? Rabbits have colonized countries worldwide, often with dire economic and ecological consequences, but their secret has until now been a mystery. Biologists sequenced the genomes of nearly 300 rabbits from across three continents to unveil the key genetic changes that make these animals master colonizers.

Biology: Biochemistry Biology: Botany Biology: Microbiology Ecology: Invasive Species
Published

Honey bees may play key role in spreading viruses to wild bumblebees      (via sciencedaily.com)     Original source 

Honey bees may play a role in increasing virus levels in wild bumble bees each spring, according to researchers who analyzed seasonal trends of parasite and virus transmission in bees.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

First visualization of valence electrons reveals fundamental nature of chemical bonding      (via sciencedaily.com)     Original source 

The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.

Chemistry: Biochemistry Energy: Nuclear Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

New heaviest exotic antimatter nucleus      (via sciencedaily.com)     Original source 

Scientists studying the tracks of particles streaming from six billion collisions of atomic nuclei at the Relativistic Heavy Ion Collider (RHIC) -- an 'atom smasher' that recreates the conditions of the early universe -- have discovered a new kind of antimatter nucleus, the heaviest ever detected. Composed of four antimatter particles -- an antiproton, two antineutrons, and one antihyperon -- these exotic antinuclei are known as antihyperhydrogen-4.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Ecology: Extinction Ecology: Invasive Species Ecology: Nature Ecology: Trees Offbeat: General Offbeat: Plants and Animals
Published

'Masters of shape-shifting': How darkling beetles conquered the world      (via sciencedaily.com)     Original source 

Large-scale genomic analysis of darkling beetles, a hyper-diverse insect group of more than 30,000 species worldwide, rolls back the curtain on a 150-million-year evolutionary tale of one of Earth's most ecologically important yet inconspicuous creatures, according to new research.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

Explanation found for X-ray radiation from black holes      (via sciencedaily.com)     Original source 

Researchers have succeeded in something that has been pursued since the 1970s: explaining the X-ray radiation from the black hole surroundings. The radiation originates from the combined effect of the chaotic movements of magnetic fields and turbulent plasma gas.

Biology: General Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Geoscience: Earth Science
Published

Will climate change lead to the extinction of a newly discovered tarantula species?      (via sciencedaily.com)     Original source 

Biologists have discovered a new species of tarantula from the Madrean Sky Island biodiversity hotspot in southeastern Arizona. This remarkable new species is endemic to the Chiricahua Mountains and is predominately distributed in mid- to high-elevation forests, which are increasingly threatened due to climate change.

Biology: Biochemistry Biology: General Ecology: Invasive Species
Published

The bee's knees: New tests created to find fake honey      (via sciencedaily.com)     Original source 

Researchers have developed new ways to detect sugar syrup adulteration in honey, paving the way for fast and accurate tests to discover fake products.

Physics: General Physics: Quantum Physics
Published

Large Hadron Collider pipe brings search for elusive magnetic monopole closer than ever      (via sciencedaily.com)     Original source 

New research using a decommissioned section of the beam pipe from the Large Hadron Collider (LHC) at CERN has bought scientists closer than ever before to test whether magnetic monopoles exist. Scientists have revealed the most stringent constraints yet on the existence of magnetic monopoles, pushing the boundaries of what is known about these elusive particles.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New insight Into behavior of electrons      (via sciencedaily.com)     Original source 

Physicists have uncovered new states of matter by exploring the behavior of flatland electrons in extreme conditions, revealing insights that could impact quantum computing and advanced materials.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum pumping in molecular junctions      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical modelling technique that could potentially be used in the development of switches or amplifiers in molecular electronics.