Ecology: Invasive Species Paleontology: Fossils Paleontology: General
Published

Marine fossils are a reliable benchmark for degrading and collapsing ecosystems      (via sciencedaily.com)     Original source 

Humans began altering environments long before records were kept of the things that lived in them, making it difficult for scientists to determine what healthy ecosystems should look like. Researchers show the recent fossil record preserves a reliable snapshot of marine environments as they existed before humans.

Ecology: Invasive Species
Published

Caterpillar venom study reveals toxins borrowed from bacteria      (via sciencedaily.com)     Original source 

Researchers have found toxins in the venom of asp caterpillars are completely different to anything they have seen before in insects. Toxins in the caterpillar venom punch holes in cells the same way as toxins produced by disease-causing bacteria such as E. coli and Salmonella. Venoms are rich sources of new molecules that could be developed into medicines of the future, pesticides, or used as scientific tools.

Ecology: Invasive Species Ecology: Trees Environmental: Ecosystems Geoscience: Environmental Issues
Published

Forest can adapt to climate change, but not quickly enough      (via sciencedaily.com)     Original source 

America's forests have a tough time in store for them. Climate change is increasing temperatures and decreasing moisture levels across the country, not a winning combination for trees.

Physics: Quantum Computing
Published

Researchers make a surprising discovery about the magnetic interactions in a Kagome layered topological magnet      (via sciencedaily.com) 

A team conducted an in-depth investigation of the magnetism of TbMn6Sn6, a Kagome layered topological magnet. They were surprised to find that the magnetic spin reorientation in TbMn6Sn6 occurs by generating increasing numbers of magnetically isotropic ions as the temperature increases.

Ecology: Invasive Species Ecology: Trees
Published

Study reveals how a tall spruce develops defense against hungry weevils      (via sciencedaily.com)     Original source 

A study has identified genes involved in development of stone cells -- rigid cells that can block a nibbling insect from eating budding branches of the Sitka spruce evergreen tree. The insect's attack has stunted the growth of these forest giants.

Mathematics: Modeling Physics: Quantum Computing
Published

Machine learning takes materials modeling into new era      (via sciencedaily.com) 

The arrangement of electrons in matter, known as the electronic structure, plays a crucial role in fundamental but also applied research such as drug design and energy storage. However, the lack of a simulation technique that offers both high fidelity and scalability across different time and length scales has long been a roadblock for the progress of these technologies. Researchers have now pioneered a machine learning-based simulation method that supersedes traditional electronic structure simulation techniques. Their Materials Learning Algorithms (MALA) software stack enables access to previously unattainable length scales.

Engineering: Nanotechnology Physics: Quantum Computing
Published

Researchers grow precise arrays of nanoLEDs      (via sciencedaily.com) 

A new platform enables researchers to 'grow' halide perovskite nanocrystals with precise control over the location and size of each individual crystal, integrating them into nanoscale light-emitting diodes.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Finding the flux of quantum technology      (via sciencedaily.com)     Original source 

We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email. There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers. Experts are now investigating the inside of a quantum-dot-based light emitter.

Computer Science: Quantum Computers Physics: Quantum Computing
Published

Research breakthrough could be significant for quantum computing future      (via sciencedaily.com)     Original source 

Scientists using one of the world's most powerful quantum microscopes have made a discovery that could have significant consequences for the future of computing. Researchers have discovered a spatially modulating superconducting state in a new and unusual superconductor Uranium Ditelluride (UTe2). This new superconductor may provide a solution to one of quantum computing's greatest challenges.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: Quantum Computing
Published

Researchers make a quantum computing leap with a magnetic twist      (via sciencedaily.com)     Original source 

Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining twistronics with spintronics could be the next giant leap in quantum electronics      (via sciencedaily.com)     Original source 

Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species
Published

Completing genome of rusty patched bumble bee may offer new approach to saving endangered bee      (via sciencedaily.com)     Original source 

A detailed, high-resolution map of the rusty patched bumble bee's genome has been released, offering new approaches for bringing the native pollinator back from the danger of extinction. Putting together the rusty patched bumble bee genome is part of the Beenome 100 project, a first-of-its-kind effort to create a library of high-quality, highly detailed genome maps of 100 or more diverse bee species found in the United States.

Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

For experimental physicists, quantum frustration leads to fundamental discovery      (via sciencedaily.com)     Original source 

A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New technique in error-prone quantum computing makes classical computers sweat      (via sciencedaily.com)     Original source 

Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.

Biology: Biochemistry Biology: Microbiology Biology: Zoology Ecology: Invasive Species Environmental: Biodiversity Geoscience: Environmental Issues Geoscience: Geography
Published

Researchers find high risk to amphibians if fungal pathogen invades North America      (via sciencedaily.com)     Original source 

New research indicates the fungal pathogen Batrachochytrium salamandrivorans (Bsal) could be devastating to amphibian biodiversity if introduced to North America.

Biology: Botany Ecology: Endangered Species Ecology: Invasive Species Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Plant remediation effects on petroleum contamination      (via sciencedaily.com)     Original source 

Initial choices about fertilization and grass seeding could have a long-lasting effect on how plants and their associated microbes break down pollution in petroleum-contaminated soils.