Showing 20 articles starting at article 601

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Engineering: Graphene

Return to the site home page

Biology: Developmental
Published

Rewiring blood cells to give rise to precursors of sperm      (via sciencedaily.com) 

Scientists transform blood cells to regain a flexible fate, growing into a precursor of sperm cells.

Biology: Developmental Biology: Microbiology Ecology: Animals
Published

First stem cells from a bat species known to harbor SARS-CoV-2 could shed light on virus survival and molecular adaptability      (via sciencedaily.com) 

Researchers have generated the first induced pluripotent stem cells (iPSCs) from bats, gaining valuable insights into the close relationship between bats and viruses.

Biology: Developmental
Published

Scientists make stunning discovery, find new protein activity in telomeres      (via sciencedaily.com) 

Researchers made the stunning discovery that telomeres contain genetic information to produce two small proteins, one of which they found is elevated in some human cancer cells, as well as cells from patients suffering from telomere-related defects.

Engineering: Graphene
Published

Smooth sailing for electrons in graphene      (via sciencedaily.com) 

Physicists have directly measured, for the first time at nanometer resolution, the fluid-like flow of electrons in graphene. The results have applications in developing new, low-resistance materials, where electrical transport would be more efficient.

Engineering: Graphene Engineering: Nanotechnology Geoscience: Environmental Issues
Published

From plastic waste to valuable nanomaterials      (via sciencedaily.com) 

Scientists create carbon nanotubes and other hybrid nanomaterials out of plastic waste using an energy-efficient, low-cost, low-emissions process that could also be profitable.

Biology: Developmental Mathematics: General Mathematics: Modeling
Published

AI analyzes cell movement under the microscope      (via sciencedaily.com) 

Using artificial intelligence (AI), researchers can now follow cell movement across time and space. The method could be very helpful for developing more effective cancer medications.

Biology: Developmental
Published

Drug alleviates autism-associated behavior in mice      (via sciencedaily.com) 

The behavioral disorders observed in autism are associated with a multitude of genetic alterations. Scientists have now found another molecular cause for this condition. The transcription factor MYT1L normally protects the molecular identity of nerve cells. If it is genetically switched off in human nerve cells or in mice, the functional changes and symptoms typical of autism occur. A drug that blocks sodium channels in the cell membrane can reverse the consequences of MYT1L failure and alleviate the functional and behavioral abnormalities in mice.

Biology: Developmental Offbeat: Plants and Animals Physics: Acoustics and Ultrasound
Published

Creating 3D objects with sound      (via sciencedaily.com) 

Scientists have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads and even biological cells can be printed. These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering.

Biology: Developmental Biology: Evolutionary
Published

Genetic switch makes the eyes of male bees large and of female bees small      (via sciencedaily.com) 

Bee researchers have identified a new gene in honeybees, which is responsible for the dimorphic eye differentiation between males and females of the species. The researchers have now presented this gene and the evolutionary genetic conclusions they have drawn from it.

Biology: Developmental
Published

Previously unknown cell mechanism could help counter cancer and aging      (via sciencedaily.com) 

In a new study, researchers discovered an unknown mechanism of how cells 'remember' their identity when they divide -- the cells' so-called epigenetic memory.

Biology: Developmental Computer Science: General Mathematics: Modeling
Published

Computer model IDs roles of individual genes in early embryonic development      (via sciencedaily.com) 

Computer software can predict what happens to complex gene networks when individual genes are missing or dialed up more than usual. Mapping the roles of single genes in these networks is key to understanding healthy development and finding ways to regrow damaged cells and tissues. Understanding genetic errors could provide insight into birth defects, miscarriage or even cancer.

Computer Science: General Computer Science: Virtual Reality (VR) Engineering: Graphene
Published

Virtual and augmented reality: Researchers pioneer process to stack micro-LEDs      (via sciencedaily.com) 

Researchers are using emerging technology to demonstrate a process that will enable more immersive and realistic virtual and augmented reality displays with the world's smallest and thinnest micro-LEDs.

Biology: Developmental Biology: Microbiology Offbeat: Plants and Animals
Published

Human brain organoids respond to visual stimuli when transplanted into adult rats      (via sciencedaily.com) 

Researchers show that brain organoids -- clumps of lab-grown neurons -- can integrate with rat brains and respond to visual stimulation like flashing lights.

Engineering: Graphene Space: Exploration
Published

New research computes first step toward predicting lifespan of electric space propulsion systems      (via sciencedaily.com)     Original source 

Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.

Engineering: Graphene
Published

Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale      (via sciencedaily.com) 

In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.

Biology: Developmental Engineering: Nanotechnology Offbeat: Plants and Animals
Published

This groundbreaking biomaterial heals tissues from the inside out      (via sciencedaily.com) 

A new biomaterial that can be injected intravenously, reduces inflammation in tissue and promotes cell and tissue repair. The biomaterial was tested and proven effective in treating tissue damage caused by heart attacks in both rodent and large animal models. Researchers also provided proof of concept in a rodent model that the biomaterial could be beneficial to patients with traumatic brain injury and pulmonary arterial hypertension.

Engineering: Graphene
Published

Superconductivity switches on and off in 'magic-angle' graphene      (via sciencedaily.com) 

Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.

Chemistry: Thermodynamics Engineering: Graphene
Published

Researchers can 'see' crystals perform their dance moves      (via sciencedaily.com) 

Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.

Biology: Botany Biology: Developmental Ecology: General Ecology: Research
Published

New species of microalgae discovered      (via sciencedaily.com) 

A new species of microalgae was found in water from a home aquarium. While analyzing DNA samples taken from the algae, researchers discovered Medakamo hakoo, whose DNA sequence didn't match any on record. This new species is the smallest known freshwater green algae, with inherent qualities which enable it to be cultured stably at high density, meaning it could be effectively used to produce useful products for food and industry.

Computer Science: Quantum Computers Engineering: Graphene Offbeat: Computers and Math Physics: Quantum Computing
Published

Scientists observe 'quasiparticles' in classical systems      (via sciencedaily.com) 

Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.