Showing 20 articles starting at article 521
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Computer Science: Quantum Computers
Published Building muscle in the lab



A new method allows large quantities of muscle stem cells to be safely obtained in cell culture. This provides a potential for treating patients with muscle diseases -- and for those who would like to eat meat, but don't want to kill animals.
Published Scientists discover external protein network can help stabilize neural connections



The Noelin family of secreted proteins bind to the external portion of AMPA glutamate receptors and stabilize them on the neuronal cellular membrane, a process necessary for transmission of full-strength signals between neurons, according to a new study.
Published Switching 'spin' on and off (and up and down) in quantum materials at room temperature


Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.
Published New algorithm captures complex 3D light scattering information from live specimens


Researchers have developed a new algorithm for recovering the 3D refractive index distribution of biological samples that exhibit multiple types of light scattering.
Published Carbon-based quantum technology


Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.
Published Distribution of genetic information during bacterial cell division


A mathematical model provides new insights into the distribution of genetic information during bacterial cell division
Published Arrays of quantum rods could enhance TVs or virtual reality devices


Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.
Published Global consortium creates large-scale, cross-species database and universal 'clock' to estimate age in all mammalian tissues



An international research team details changes in DNA that researchers found are shared by humans and other mammals throughout history and are associated with life span and numerous other traits.
Published Researchers engineer bacteria that can detect tumor DNA



Creating new technologically advanced sensors, scientists have engineered bacteria that detect the presence of tumor DNA in live organisms. Their innovation could pave the way to new biosensors capable of identifying various infections, cancers and other diseases.
Published Scientists reverse hearing loss in mice



New research has successfully reversed hearing loss in mice. Scientists used a genetic approach to fix deafness in mice, restoring their hearing abilities in low and middle frequency ranges.
Published Surprising discovery of low-noise genes



While engaging in cell division research, researchers made a surprisingly quiet discovery. When cells express RNA, there is always some fluctuation, or noise, in how much RNA is produced. The scientists found several genes whose noise dips below a previously established threshold, known as the noise floor, during expression.
Published The 'unknome': A database of human genes we know almost nothing about



Researchers hope that a new, publicly available database they have created will shrink, not grow, over time. That's because it is a compendium of the thousands of understudied proteins encoded by genes in the human genome, whose existence is known but whose functions are mostly not.
Published Quantum material exhibits 'non-local' behavior that mimics brain function


New research shows that electrical stimuli passed between neighboring electrodes can also affect non-neighboring electrodes. Known as non-locality, this discovery is a crucial milestone toward creating brain-like computers with minimal energy requirements.
Published Mineralization of bone matrix regulates tumor cell growth



Tumor cells are known to be fickle sleeper agents, often lying dormant in distant tissues for years before reactivating and forming metastasis. Numerous factors have been studied to understand why the activation occurs, from cells and molecules to other components in the so-called tissue microenvironment.
Published Astonishing complexity of bacterial circadian clocks



Bacteria make up more than 10% of all living things but until recently we had little realization that, as in humans, soil bacteria have internal clocks that synchronize their activities with the 24-hour cycles of day and night on Earth. New research shows just how complex and sophisticated these bacterial circadian clocks are, clearing the way for an exciting new phase of study.
Published Parasites of viruses drive superbug evolution



Researchers have discovered a previously unknown mechanism by which bacteria share their genetic material through virus parasites. The insights could help scientists to better understand how bacteria rapidly adapt and evolve, and how they become more virulent and resistant to antibiotics.
Published Study finds a surprising new role for a major immune regulator



The immune regulatory protein STING has a previously unknown function: acting as an ion channel that allows protons to leak into cells. This discovery makes it the first human immune sensor that can translate danger signals into ion flow.
Published DNA tilts and stretches underlie differences in mutation rates across genomes



Researchers have changed the way to look at DNA. They show that DNA is much more than a linear sequence of building blocks; it has a 3D structure that influences the variation of human genome-wide mutation rates meaningfully and consistently, and this is likely conserved among species.
Published Current takes a surprising path in quantum material


Researchers used magnetic imaging to obtain the first direct visualization of how electrons flow in a special type of insulator, and by doing so they discovered that the transport current moves through the interior of the material, rather than at the edges, as scientists had long assumed.
Published Sensing and controlling microscopic spin density in materials


Researchers found a way to tune the spin density in diamond by applying an external laser or microwave beam. The finding could open new possibilities for advanced quantum devices.