Showing 20 articles starting at article 1281

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology, Physics: General

Return to the site home page

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Nanophotonics: Coupling light and matter      (via sciencedaily.com)     Original source 

Researchers have developed a metasurface that enables strong coupling effects between light and transition metal dichalcogenides (TMDCs).

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researcher uses pressure to understand RNA dynamics      (via sciencedaily.com)     Original source 

Just as space holds infinite mysteries, when we zoom in at the level of biomolecules (one trillion times smaller than a meter), there is still so much to learn. Scientists are studying the conformational landscapes of biomolecules and how they modulate cell function. When biomolecules receive certain inputs, it can cause the atoms to rearrange and the biomolecule to change shape. This change in shape affects their function in cells, so understanding conformational dynamics is critical for drug development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

The molecular control center of our protein factories      (via sciencedaily.com)     Original source 

Researchers have deciphered a biochemical mechanism that ensures that newly formed proteins are processed correctly when they leave the cell's own protein factories. This solves a decade-old puzzle in protein sorting.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Einstein and Euler put to the test at the edge of the Universe      (via sciencedaily.com)     Original source 

The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular
Published

Studying herpes encephalitis with mini-brains      (via sciencedaily.com)     Original source 

The herpes simplex virus-1 can sometimes cause a dangerous brain infection. Combining an anti-inflammatory and an antiviral could help in these cases, report scientists.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular
Published

Unraveling the connections between the brain and gut      (via sciencedaily.com)     Original source 

Engineers designed a technology to probe connections between the brain and the digestive tract. Using fibers embedded with a variety of sensors, as well as optogenetic stimulation, the researchers could control neural circuits connecting the gut and the brain, in mice.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Endangered Species Environmental: General
Published

A roadmap for gene regulation in plants      (via sciencedaily.com)     Original source 

For the first time, researchers have developed a genome-scale way to map the regulatory role of transcription factors, proteins that play a key role in gene expression and determining a plant's physiological traits. Their work reveals unprecedented insights into gene regulatory networks and identifies a new library of DNA parts that can be used to optimize plants for bioenergy and agriculture.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Now, every biologist can use machine learning      (via sciencedaily.com)     Original source 

Scientists have built a new, comprehensive AutoML platform designed for biologists with little to no ML experience. New automated machine learning platform enables easy, all-in-one analysis, design, and interpretation of biological sequences with minimal coding. Their platform, called BioAutoMATED, can use sequences of nucleic acids, peptides, or glycans as input data, and its performance is comparable to other AutoML platforms while requiring minimal user input.

Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining twistronics with spintronics could be the next giant leap in quantum electronics      (via sciencedaily.com)     Original source 

Quantum researchers twist double bilayers of an antiferromagnet to demonstrate tunable moiré magnetism.

Physics: General Physics: Optics Physics: Quantum Physics Space: Exploration Space: General
Published

Groundwork for future ultra-precise timing links to geosynchronous satellites      (via sciencedaily.com)     Original source 

Scientists have demonstrated a capability long sought by physicists: transmitting extremely precise time signals through the air between far-flung locations at powers that are compatible with future space-based missions. The results could enable time transfer from the ground to satellites in geosynchronous orbit with femtosecond precision -- 10,000 times better than the existing state-of-the-art satellite approaches. It also would allow for successful synchronization using the bare minimum timing signal strength, which would make the system highly robust in the face of atmospheric disturbances.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Zoology Ecology: Animals Ecology: Endangered Species Ecology: Extinction Ecology: Nature Environmental: Biodiversity
Published

Cryo conservation: A cool solution to saving species from extinction      (via sciencedaily.com)     Original source 

In the face of the biodiversity crisis, and alarming data showing a 69% decline in global animal populations since 1970, researchers are banking on a cool solution to help save species from extinction. Much like egg-freezing is used to preserve human fertility options for a later date, the cryo-freezing of genetic samples taken from animals may play an essential role in curbing species extinctions. A new study sheds light on the immense potential of living cell banks, also known as cryobanks, to contribute to global conservation priorities.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new tool to study complex genome interactions      (via sciencedaily.com)     Original source 

Genome Architecture Mapping captures complex, multi-way interactions in the genome. This is different than the workhorse technique of 3D genomics, which sees mostly two-way contacts, finds a new study.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Tethering of shattered chromosomal fragments paves way for new cancer therapies      (via sciencedaily.com)     Original source 

Scientists discover shattered chromosomal fragments are tethered together during cell division before being rearranged; destroying the tether may help prevent cancerous mutations.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Close up on aging reveals how different cell types in the body age at different pace      (via sciencedaily.com)     Original source 

A team or researchers reports the first Aging Fly Cell Atlas (AFCA), a detailed characterization of the aging process in 163 distinct cell types in the laboratory fruit fly. Their in-depth analysis revealed that different cell types in the body age differently, each cell type following a process involving cell type-specific patterns. AFCA provides a valuable resource for researchers in the fruit fly and aging communities as a reference to study aging and age-related diseases and to evaluate the success of anti-aging strategies.

Engineering: Graphene Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Terahertz-to-visible light conversion for future telecommunications      (via sciencedaily.com)     Original source 

A study demonstrates that graphene-based materials can be used to efficiently convert high-frequency signals into visible light, and that this mechanism is ultrafast and tunable. These outcomes open the path to exciting applications in near-future information and communication technologies.