Showing 20 articles starting at article 21

< Previous 20 articles        Next 20 articles >

Categories: Biology: Biotechnology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Zebrafish use surprising strategy to regrow spinal cord      (via sciencedaily.com)     Original source 

A new study maps out a detailed atlas of all the cells involved in regenerating the zebrafish spinal cord. In an unexpected finding, the researchers showed that survival and adaptability of the severed neurons themselves is required for full spinal cord regeneration. Surprisingly, the study showed that stem cells capable of forming new neurons play a complementary role but don t lead the process.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

Surprise finding in study of environmental bacteria could advance search for better antibiotics      (via sciencedaily.com)     Original source 

Researchers studying bacteria from freshwater lakes and soil say they have determined a protein's essential role in maintaining the germ's shape. Because the integrity of a bacterial cell's 'envelope' or enclosure is key to its survival, the finding could advance the search for new and better antibiotics.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Environmental: Ecosystems Environmental: General Geoscience: Geochemistry
Published

Revealing the mysteries within microbial genomes      (via sciencedaily.com)     Original source 

A new technique will make it much easier for researchers to discover the traits or activities encoded by genes of unknown function in microbes, a key step toward understanding the roles and impact of individual species within the planet's diverse microbiomes.

Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Genetics
Published

How bread dough gave rise to civilization      (via sciencedaily.com)     Original source 

A major international study has explained how bread wheat helped to transform the ancient world on its path to becoming the iconic crop that today helps sustain a global population of eight billion.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

Beige fat cells with a 'Sisyphus mechanism'      (via sciencedaily.com)     Original source 

A new class of fat cells makes people healthier. The cells consume energy and produce heat through seemingly pointless biochemical reactions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Molecular
Published

New mechanism of action kills cancer cells      (via sciencedaily.com)     Original source 

Conventional cancer drugs work by triggering apoptosis, that is programmed cell death, in tumor cells. However, tumor cells have the ability to develop strategies to escape apoptosis, rendering the drugs ineffective. A research team now describes a new mechanism of action that kills cancer cells through ferroptosis.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

A ketogenic diet could improve the response to pancreatic cancer therapy      (via sciencedaily.com)     Original source 

Scientists have discovered a way to get rid of pancreatic cancer in mice by putting them on a high fat, or ketogenic, diet and giving them cancer therapy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics
Published

Researchers call for genetically diverse models to drive innovation in drug discovery      (via sciencedaily.com)     Original source 

Researchers unveiled an approach to drug discovery that could revolutionize how we understand and treat diseases. Their commentary explains the limitations of studies using traditional mouse models and proposes using genetically diverse mice and mouse and human cells to better predict human responses to drugs and diseases.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

Exciting advance in stem cell therapy      (via sciencedaily.com)     Original source 

A new technique for mechanically manipulating stem cells could lead to new stem cell treatments, which have yet to fulfill their therapeutic potential.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Zoology Ecology: Research
Published

Pit-building venom mixers      (via sciencedaily.com)     Original source 

Researchers show that the adaptation of antlions to their ecological niche has also changed their venom. They compared the venom system of antlion and closely related green lacewing larvae. Antlions produce a much more complex venom from three different venom glands than lacewing larvae do. All the venom proteins identified come from the insects themselves, not from symbiotic bacteria. Some of the toxins are new and appear to be unique to antlions. Waiting for their victims in pitfall traps in the sand, antlions can use their venom to immobilize larger prey. The venom therefore plays an important ecological role in adapting to their barren habitat.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Zoology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Reduce, reuse, 're-fly-cle'      (via sciencedaily.com)     Original source 

Black soldier flies are now commercially used to consume organic waste -- but genetic modifications proposed by bioscientists could see the insects digesting a wider variety of refuse, while also creating raw ingredients for industry.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers ID body's 'quality control' regulator for protein folding      (via sciencedaily.com)     Original source 

Anyone who's tried to neatly gather a fitted sheet can tell you: folding is hard. Get it wrong with your laundry and the result can be a crumpled, wrinkled mess of fabric, but when folding fails among the approximately 7,000 proteins with an origami-like complexity that regulate essential cellular functions, the result can lead to one of a multitude of serious diseases ranging from emphysema and cystic fibrosis to Alzheimer's disease. Fortunately, our bodies have a quality-control system that identifies misfolded proteins and marks them either for additional folding work or destruction, but how, exactly, this quality-control process functions is not entirely known. Researchers have now made a major leap forward in our understanding of how this quality-control system works by discovering the 'hot spot' where all the action takes place.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Low magnesium levels increase disease risk      (via sciencedaily.com)     Original source 

A new study has identified why a diet rich in magnesium is so important for our health, reducing the risk of DNA damage and chronic degenerative disorders.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular
Published

Taking a 'one in a million' shot to tackle dopamine-linked brain disorders      (via sciencedaily.com)     Original source 

With the help of a tiny, transparent worm called Caenorhabditis elegans, researchers have identified novel players in dopamine signaling by taking advantage of a powerful platform generated via the Million Mutation Project (MMP) for the rapid identification of mutant genes based on their functional impact. They can seek insights from simpler organisms whose genes bear striking similarity to those found in humans and where opportunities for genetic insights to disease can be pursued more efficiently and inexpensively.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular
Published

An appetizer can stimulate immune cells' appetite, a boon for cancer treatments      (via sciencedaily.com)     Original source 

The body has a veritable army constantly on guard to keep us safe from microscopic threats from infections to cancer. Chief among this force is the macrophage, a white blood cell that surveils tissues and consumes pathogens, debris, dead cells, and cancer. Macrophages have a delicate task. It's crucial that they ignore healthy cells while on patrol, otherwise they could trigger an autoimmune response while performing their duties.

Biology: Biochemistry Biology: Biotechnology Biology: General Ecology: Trees Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New genetically engineered wood can store carbon and reduce emissions      (via sciencedaily.com)     Original source 

Researchers genetically modified poplar trees to produce high-performance, structural wood without the use of chemicals or energy intensive processing.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Biology: Zoology
Published

A new mechanism for shaping animal tissues      (via sciencedaily.com)     Original source 

A key question that remains in biology and biophysics is how three-dimensional tissue shapes emerge during animal development. Research teams have now found a mechanism by which tissues can be 'programmed' to transition from a flat state to a three-dimensional shape.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology
Published

New two-step flu vaccine strategy shows promise in pig model      (via sciencedaily.com)     Original source 

A new, two-step flu vaccination strategy that pairs intramuscular injection of a viral vectored flu vaccine with nasal spray administration of a novel attenuated live flu virus appears to be safe and effective in pigs, researchers report.