Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geography, Space: Astrophysics
Published Tiny bright objects discovered at dawn of universe baffle scientists



A recent discovery by NASA's James Webb Space Telescope (JWST) confirmed that luminous, very red objects previously detected in the early universe upend conventional thinking about the origins and evolution of galaxies and their supermassive black holes.
Published Drowning in waste: Pollution hotspots in aquatic environments



A new study explores waste management systems and reveals that achieving zero waste leakage by 2030 is unlikely, potentially jeopardizing related Sustainable Development Goals. The authors emphasize the need for global cooperation, particularly across four regions, to responsibly manage waste disposal.
Published Climate change to shift tropical rains northward



Atmospheric scientists predict that unchecked carbon emissions will force tropical rains to shift northward in the coming decades, which would profoundly impact agriculture and economies near the Earth's equator. The northward rain shift would be spurred by carbon emissions that influence the formation of the intertropical convergence zones that are essentially atmospheric engines that drive about a third of the world's precipitation.
Published Too many missing satellite galaxies found



Bringing us one step closer to solving the 'missing satellites problem,' researchers have discovered two new satellite galaxies.
Published Projected loss of brown macroalgae and seagrasses with global environmental change



Researchers predict that climate change will drive a substantial redistribution of brown seaweeds and seagrasses at the global scale. The projected changes are alarming due to the fundamental role seaweeds and seagrasses in coastal ecosystems and provide evidence of the pervasive impacts of climate change on marine life.
Published The density difference of sub-Neptunes finally deciphered



The majority of stars in our galaxy are home to planets. The most abundant are the sub-Neptunes, planets between the size of Earth and Neptune. Calculating their density poses a problem for scientists: depending on the method used to measure their mass, two populations are highlighted, the dense and the less dense. Is this due to an observational bias or the physical existence of two distinct populations of sub-Neptunes? Recent work argues for the latter.
Published Antarctic ice shelves hold twice as much meltwater as previously thought



Slush -- water-soaked snow -- makes up more than half of all meltwater on the Antarctic ice shelves during the height of summer, yet is poorly accounted for in regional climate models. The findings could have profound implications for ice shelf stability and sea level rise.
Published New twists on tornadoes: Earth scientist studies why U.S. has so many tornadoes



Across the Midwest during the warmer months, studying the sky for signs of storms and tornadoes becomes one of the most popular pastimes. Working at the intersection of climate science and meteorology and using modeling, scientists are looking at the big picture of what causes severe storms and tornadoes -- and what dictates where they occur.
Published Researchers address ocean paradox with 55 gallons of fluorescent dye



Researchers have directly measured cold, deep water upwelling via turbulent mixing along the slope of a submarine canyon in the Atlantic Ocean.
Published El NiƱo forecasts extended to 18 months with innovative physics-based model



As more attention is drawn to possible severe weather around the world scientists are looking to improve planning for possible droughts, floods and other scenarios. A team of researchers created a new tool that will allow forecasting of El Nino Southern Oscillation by up to 18 months.
Published Precision instrument bolsters efforts to find elusive dark energy



Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Pillars of creation star in new visualization from NASA's Hubble and Webb telescopes



Made famous in 1995 by NASA's Hubble Space Telescope, the Pillars of Creation in the heart of the Eagle Nebula have captured imaginations worldwide with their arresting, ethereal beauty. Now, NASA has released a new 3D visualization of these towering celestial structures using data from NASA's Hubble and James Webb space telescopes. This is the most comprehensive and detailed multiwavelength movie yet of these star-birthing clouds.
Published Underwater mountains have a big impact on ocean circulation



Colossal undersea mountains, towering up to thousands of metres high, stir up deep sea currents: impacting how our ocean stores heat and carbon. An international team used numerical modelling to quantify how underwater turbulence around these mountains, called seamounts, influences ocean circulation; finding it is an important mechanism in ocean mixing and one that is missing from climate models used in policymaking.
Published New evidence for how heat is transported below the sun's surface



Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.
Published First of its kind detection made in striking new Webb image



For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
Published A hidden treasure in the Milky Way -- Astronomers uncover ultrabright x-ray source



Astronomers uncovered that a well-known X-ray binary, whose exact nature has been a mystery to scientists until now, is actually a hidden ultraluminous X-ray source.
Published Carbon dioxide's heavy stamp on temperature: Doubling CO2 may mean 7 to 14 degree increase



A doubling of the amount of CO2 in the atmosphere could cause an increase in the average temperature on earth from 7 to even a maximum of 14 degrees. That is shown in the analysis of sediments from the Pacific Ocean off the coast of California.
Published Star clusters observed within a galaxy in the early Universe



The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.
Published Up to 30 percent more time: Climate change makes it harder for women to collect water, study finds



By 2050, climate change could increase the amount of time women in households without running water spend collecting water by up to 30 percent on global average, according to a new study. In regions of South America and Southeast Asia, the time spent collecting water could double due to higher temperatures. Scientists estimate the large welfare losses that could result from climate impacts and highlights how women are particularly vulnerable to changing future climate conditions.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard



Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.