Showing 20 articles starting at article 681
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earth Science, Space: Astrophysics
Published Can signs of life be detected from Saturn's frigid moon?



Researchers have shown unambiguous laboratory evidence that amino acids transported in the ice plumes of Saturn's moon, Eceladus, can survive impact speeds of up to 4.2 km/s, supporting their detection during sampling by spacecraft.
Published Wildfires have erased two decades' worth of air quality gains in western United States



A new study concludes that wildfires originating in the western United States and Canada have erased air quality gains over the past two decades and caused an increase of premature deaths in fire-prone areas and downwind regions, primarily in the western U.S.
Published Fossil CO2 emissions at record high in 2023



Global carbon emissions from fossil fuels have risen again in 2023 -- reaching record levels, according to new research.
Published Interpreting the afterglow of a black hole's breakfast



An entirely new way to probe how active black holes behave when they eat has been discovered by an international team of astronomers.
Published 10-billion-year, 50,000-light-year journey to black hole



A star near the supermassive black hole at the center of the Milky Way Galaxy originated outside of the Galaxy according to a new study. This is the first time a star of extragalactic origin has been found in the vicinity of the super massive black hole.
Published New theory unites Einstein's gravity with quantum mechanics



The prevailing assumption has been that Einstein's theory of gravity must be modified, or 'quantized', in order to fit within quantum theory. This is the approach of two leading candidates for a quantum theory of gravity, string theory and loop quantum gravity. But a new theory challenges that consensus and takes an alternative approach by suggesting that spacetime may be classical -- that is, not governed by quantum theory at all.
Published More than a meteorite: New clues about the demise of dinosaurs



What wiped out the dinosaurs? A meteorite plummeting to Earth is only part of the story, a new study suggests. Climate change triggered by massive volcanic eruptions may have ultimately set the stage for the dinosaur extinction, challenging the traditional narrative that a meteorite alone delivered the final blow to the ancient giants.
Published Dark galactic region nicknamed 'The Brick' explained with Webb telescope findings



Using the James Webb Space Telescope, astronomers spot unexpected source of carbon monoxide ice at galactic region surprisingly devoid of stars.
Published Ghostlike dusty galaxy reappears in James Webb Space Telescope image



Astronomers studying images from the James Webb Space Telescope have identified an object as a 'dusty star-forming galaxy' from nearly 1 billion years after the Big Bang. They have also discovered more than a dozen additional candidates, suggesting these galaxies might be three to 10 times as common as expected. If that conclusion is confirmed, it suggests the early universe was much dustier than previously thought.
Published Meteorites likely source of nitrogen for early Earth



Micrometeorites originating from icy celestial bodies in the outer Solar System may be responsible for transporting nitrogen to the near-Earth region in the early days of our solar system.
Published A new possible explanation for the Hubble tension



The universe is expanding. How fast it does so is described by the so-called Hubble-Lemaitre constant. But there is a dispute about how big this constant actually is: Different measurement methods provide contradictory values. This so-called 'Hubble tension' poses a puzzle for cosmologists. Researchers are now proposing a new solution: Using an alternative theory of gravity, the discrepancy in the measured values can be easily explained -- the Hubble tension disappears.
Published Discovery of planet too big for its sun throws off solar system formation models



The discovery of a planet that is far too massive for its sun is calling into question what was previously understood about the formation of planets and their solar systems.
Published Rocky planets can form in extreme environments



Astronomers have provided the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought.
Published Antarctica's ancient ice sheets foreshadow dynamic changes in Earth's future



Identifying how and why Antarctica's major ice sheets behaved the way they did in the early Miocene could help inform understanding of the sheets' behavior under a warming climate. Together, the ice sheets lock a volume of water equivalent to more than 50 meters of sea level rise and influence ocean currents that affect marine food webs and regional climates. Their fate has profound consequences for life nearly everywhere on Earth.
Published Decoding past climates through dripstones



A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.
Published how far can the wind can carry a plant's seeds? New model



Playing an essential foundational role in an ecosystem, plants contribute to the well-being of human health by helping create resources like food and medicine. Therefore, to better understand how plants can maintain resiliency in the face of challenges like climate change, researchers recently developed an innovative mathematical model that can provide fast and reliable predictions of how far wind can carry a plant's seeds.
Published 600 years of tree rings reveal climate risks in California



The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published Building blocks for life could have formed near new stars and planets



While life on Earth is relatively new, geologically speaking, the ingredients that combined to form it might be much older than once thought. The simplest amino acid, carbamic acid, could have formed alongside stars or planets within interstellar ices. The findings could be used to train deep space instruments like the James Webb Space Telescope to search for prebiotic molecules in distant, star-forming regions of the universe.
Published New astrophysics model sheds light on additional source of long gamma-ray bursts



Cutting-edge computer simulations combined with theoretical calculations are helping astronomers better understand the origin of some of the universe's most energetic and mysterious light shows -- gamma-ray bursts, or GRBs. The new unified model confirms that some long-lasting GRBs are created in the aftermath of cosmic mergers that spawn an infant black hole surrounded by a giant disk of natal material.
Published Landscape dynamics determine the evolution of biodiversity on Earth



A landmark study into the geological timescale distribution of sediment and nutrients over 500 million years shows that species biodiversity on Earth is driven by landscape dynamics.