Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Space: Astrophysics
Published The world in grains of interstellar dust


Understanding how dust grains form in interstellar gas could offer significant insights to astronomers and help materials scientists develop useful nanoparticles.
Published Researchers measure size-luminosity relation of galaxies less than a billion years after Big Bang


A team has studied the relation between galaxy size and luminosity of some of the earliest galaxies in the universe taken by the James Webb Space Telescope, less than a billion years after the Big Bang.
Published Hubble finds hungry black hole twisting captured star into donut shape


Black holes are gatherers, not hunters. They lie in wait until a hapless star wanders by. When the star gets close enough, the black hole's gravitational grasp violently rips it apart and sloppily devours its gasses while belching out intense radiation. Astronomers have recorded a star's final moments in detail as it gets gobbled up by a black hole.
Published How do rocky planets really form?


A new theory could explain the origin and properties of systems of rocky super-Earths and their relationship with the terrestrial planets of the solar system.
Published How did the Butterfly Nebula get its wings? It's complicated


Something is amiss in the Butterfly Nebula. When astronomers compared two exposures of this planetary nebula that had been taken by the Hubble Space Telescope in 2009 and 2020, they saw dramatic changes in the material within its 'wings.' Powerful winds are apparently driving complex alterations of material within the Butterfly Nebula, behavior not seen in planetary nebulae to date. The researchers want to understand how such activity is possible from what should be a 'sputtering, largely moribund star with no remaining fuel.'
Published Study offers most detailed glimpse yet of planet's last 11,000 summers and winters


An international team of collaborators have revealed the most detailed look yet at the planet's recent climactic history, including summer and winter temperatures dating back 11,000 years to the beginning of what is known as the Holocene.
Published Map of ancient ocean 'dead zones' could predict future locations, impacts


Researchers have created a map of oceanic 'dead zones' that existed during the Pliocene epoch, when the Earth's climate was two to three degrees warmer than it is now. The work could provide a glimpse into the locations and potential impacts of future low oxygen zones in a warmer Earth's oceans.
Published Bering Land Bridge formed surprisingly late during last ice age


A new study that reconstructs the history of sea level at the Bering Strait shows that the Bering Land Bridge connecting Asia to North America did not emerge until around 35,700 years ago, less than 10,000 years before the height of the last ice age (known as the Last Glacial Maximum). The findings indicate that the growth of the ice sheets -- and the resulting drop in sea level -- occurred surprisingly quickly and much later in the glacial cycle than previous studies had suggested.
Published Hawai'i earthquake swarm caused by magma moving through 'sills'


A machine-learning algorithm reveals the shape of massive subterranean structures linking active volcanoes.
Published New study models the transmission of foreshock waves towards Earth


As the supersonic solar wind surges towards Earth, its interaction with our planet's magnetic field creates a shock to deflect its flow, and a foreshock filled with electromagnetic waves. How these waves can propagate to the other side of the shock has long remained a mystery.
Published Predicting lava flow


A team is collecting data that will be used to create models that can help improve lava flow forecasting tools that are useful in determining how hazards impact populations. One such tool, known as MOLASSES, is a simulation engine that forecasts inundation areas of lava flow.
Published Changes in Earth's orbit may have triggered ancient warming event


Changes in Earth's orbit that favored hotter conditions may have helped trigger a rapid global warming event 56 million years ago. Researchers found the shape of Earth's orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.
Published Fish larvae find their way using external cues


The first global analysis of larval orientation studies found that millimeter-size fish babies consistently use external cues to find their way in the open ocean. There are many external cues available to marine fish including the Sun, Earth's magnetic field, and sounds. The new study offers important insight into understanding this perilous phase of marine fish.
Published Fossil site reveals giant arthropods dominated the seas 470 million years ago


Discoveries at a major new fossil site in Morocco suggest giant arthropods -- relatives of modern creatures including shrimps, insects and spiders -- dominated the seas 470 million years ago.
Published Signals from the ionosphere could improve tsunami forecasts


The powerful volcanic eruption in January 2022 created ripple effects throughout the world's atmosphere and oceans. Analysis of the Hunga Tonga eruption shows how signals from the ionosphere could help monitor future volcanoes and tsunamis.
Published Finding faults deeply stressful


Evidence that a complete stress release may have contributed to the 2011 Tohoku earthquake that broke records. Both sedimentary formations above and below the plate boundary fault lie in the stress state of normal faults in which vertical stress is greater than maximum horizontal stress. The new data show good consistency with previous results above the fault -- at the boundary between the North American plate and the subducting Pacific plate -- suggesting that combining geophysical data and core samples to comprehensively investigate stress states is effective.
Published Fresh understanding of ice age frequency


A chance find of an unstudied Antarctic sediment core has led researchers to flip our understanding of how often ice ages occurred in Antarctica.
Published Earthquake lab experiments produce aftershock-like behavior


Earthquakes are notoriously hard to predict, and so too are the usually less-severe aftershocks that often follow a major seismic event.
Published The evolution of Asia's mammals was dictated by ancient climate change and rising mountains


A new study compiles data on more than 3,000 species to show how climate and geologic changes across Asia over the last 66 million years have shaped the evolution of the continent's mammals.
Published Exploring the deep: Drones offer new ways to monitor sea floor


Researchers have developed a novel method for measuring the earth's crust on the seafloor. A lightweight geodetic measurement device was mounted on a sea-surface landing unmanned aerial vehicle (UAV). The mobility of this new system will enable rapid, efficient collection of real-time deep seafloor information, which is critical for understanding earthquake risk, as well as various other oceanographic observations.