Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Space: Astrophysics
Published New evidence for how heat is transported below the sun's surface (via sciencedaily.com) Original source
Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.
Published First of its kind detection made in striking new Webb image (via sciencedaily.com) Original source
For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
Published A hidden treasure in the Milky Way -- Astronomers uncover ultrabright x-ray source (via sciencedaily.com) Original source
Astronomers uncovered that a well-known X-ray binary, whose exact nature has been a mystery to scientists until now, is actually a hidden ultraluminous X-ray source.
Published Star clusters observed within a galaxy in the early Universe (via sciencedaily.com) Original source
The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard (via sciencedaily.com) Original source
Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.
Published Supermassive black hole appears to grow like a baby star (via sciencedaily.com) Original source
Supermassive black holes pose unanswered questions for astronomers around the world, not least 'How do they grow so big?' Now, an international team of astronomers has discovered a powerful rotating, magnetic wind that they believe is helping a galaxy's central supermassive black hole to grow. The swirling wind, revealed with the help of the ALMA telescope in nearby galaxy ESO320-G030, suggests that similar processes are involved both in black hole growth and the birth of stars.
Published What happens when neutron stars collide? (via sciencedaily.com) Original source
New simulations show that hot neutrinos created at the interface of merging binary neutron stars are briefy trapped and remain out of equilibrium with the cold cores of the stars for 2 to 3 milliseconds.
Published Astronomers see a massive black hole awaken in real time (via sciencedaily.com) Original source
In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory's Very Large Telescope (ESO's VLT), to track how the galaxy's brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy -- likely the result of the sudden awakening of the massive black hole at its core.
Published Modified gravity theory: A million light years and still going (via sciencedaily.com) Original source
In a breakthrough discovery that challenges the conventional understanding of cosmology, scientists have unearthed new evidence that could reshape our perception of the cosmos. New research shows that rotation curves of galaxies stay flat indefinitely far out, corroborating predictions of modified gravity theory as an alternative to dark matter.
Published Scientists develop 3D printed vacuum system that aims to trap dark matter (via sciencedaily.com) Original source
Using a specially designed 3D printed vacuum system, scientists have developed a way to 'trap' dark matter with the aim of detecting domain walls, this will be a significant step forwards in unravelling some of the mysteries of the universe.
Published Pair of merging quasars at cosmic dawn (via sciencedaily.com) Original source
Astronomers have discovered a double-record-breaking pair of quasars. Not only are they the most distant pair of merging quasars ever found, but also the only pair confirmed in the bygone era of the Universe's earliest formation.
Published Investigating the origins of the crab nebula (via sciencedaily.com) Original source
A team of scientists used NASA's James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus.
Published High-precision measurements challenge our understanding of Cepheids (via sciencedaily.com) Original source
Scientists have clocked the speed of Cepheid stars -- 'standard candles' that help us measure the size of the universe -- with unprecedented precision, offering exciting new insights about them.
Published Pair plasmas found in deep space can now be generated in the lab (via sciencedaily.com) Original source
Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published NASA's Roman mission gets cosmic 'sneak peek' from supercomputers (via sciencedaily.com) Original source
Researchers used supercomputers to create nearly 4 million simulated images depicting the cosmos.
Published Wind from black holes may influence development of surrounding galaxies (via sciencedaily.com) Original source
Clouds of gas in a distant galaxy are being pushed faster and faster -- at more than 10,000 miles per second -- out among neighboring stars by blasts of radiation from the supermassive black hole at the galaxy's center. It's a discovery that helps illuminate the way active black holes can continuously shape their galaxies by spurring on or snuffing out the development of new stars.
Published How do supermassive black holes get super massive? (via sciencedaily.com) Original source
By combining forefront X-ray observations with state-of-the-art supercomputer simulations of the buildup of galaxies over cosmic history, researchers have provided the best modeling to date of the growth of the supermassive black holes found in the centers of galaxies.
Published Scientists spot more Milky Way-like galaxies in early universe (via sciencedaily.com) Original source
Scientists are peering into the past and uncovering new clues about the early universe. Since light takes a long time to travel through space, they are now able to see how galaxies looked billions of years ago. The astronomers have discovered that spiral galaxies were more common in the early universe than previously thought. The scientists found that nearly 30% of galaxies have a spiral structure about 2 billion years after the universe formed. The discovery provides a significant update to the universe's origin story as previously told using data from NASA's Hubble Space Telescope.
Published Origins of fast radio bursts come into focus through polarized light (via sciencedaily.com) Original source
What scientists previously thought about where Fast Radio Bursts (FRBs) come from is just the tip of the iceberg. A new study details the properties of polarized light from 128 non-repeating FRBs and reveals mysterious cosmic explosions that originated in far-away galaxies, similar to our own Milky Way.
Published How did a satellite galaxy of the Milky Way come to be? (via sciencedaily.com) Original source
Crater 2, located approximately 380,000 light years from Earth, is one of the largest satellite galaxies of the Milky Way. Extremely cold and with slow-moving stars, Crater 2 has low surface brightness. How this galaxy originated remains unclear. A team of physicists now offers an explanation.