Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Biology: Evolutionary, Computer Science: Quantum Computers
Published It would take 23 million years for evolution to replace Madagascar's endangered mammals


90% of the plants and animals on Madagascar are found nowhere else on Earth, but this treasure trove of evolution is under serious threat due to habitat loss, over-hunting, and climate change. In this study, researchers examined how long it took Madagascar's unique modern mammal species to emerge and estimated how long it would take for a similarly complex set of new mammal species to evolve in their place if the endangered ones went extinct: 23 million years, far longer than scientists have found for any other island.
Published The optical fiber that keeps data safe even after being twisted or bent


An optical fiber that uses the mathematical concept of topology to remain robust, thereby guaranteeing the high-speed transfer of information, has been created by physicists.
Published Chlamydiae expand our view on how intracellular bacteria evolve



All chlamydiae today live inside the cells of hosts ranging from amoeba to animals. A team of scientists found that the ancestor of chlamydiae likely already lived inside host cells, but that chlamydiae infecting amoeba evolved later in ways unexpected for intracellular bacteria. The study is an important step for understanding the emergence and evolution of endosymbiotic bacteria, including human pathogens.
Published The thermodynamics of quantum computing


In research on quantum computers, one aspect that has been mostly neglected until now is the generation of heat. Physicists now focus their attention on heat as an interference factor -- and have developed a method to experimentally measure the heat generated by a superconducting quantum system.
Published Urban lizards share genomic markers not found in forest-dwellers



Lizards living in different cities have parallel genomic markers when compared to neighboring forest lizards, according to a new study. The genetic variations linked to urbanization underlie physical differences in the urban lizards, including longer limbs and larger toe pads that show how these lizards have evolved to adapt to city environments.
Published Smallpox has plagued humans since ancient Egyptian times, new evidence confirms



Smallpox was once one of humanity's most devastating diseases, but its origin is shrouded in mystery. For years, scientific estimates of when the smallpox virus first emerged have been at odds with historical records. Now, a new study reveals that the virus dates back 2,000 years further than scientists have previously shown, verifying historical sources and confirming for the first time that the disease has plagued human societies since ancient times.
Published New quantum computing architecture could be used to connect large-scale devices


Researchers have demonstrated an architecture that can enable high fidelity and scalable communication between superconducting quantum processors. Their technique can generate and route photons, which carry quantum information, in a user-specified direction. This method could be used to develop a large-scale network of quantum processors that could efficiently communicate with one another.
Published How evolution works



What genetic changes are responsible for the evolution of phenotypic traits? This question is not always easy to answer. A newly developed method now makes the search much easier.
Published Researchers show a new way to induce useful defects using invisible material properties



Much of modern electronic and computing technology is based on one idea: add chemical impurities, or defects, to semiconductors to change their ability to conduct electricity. These altered materials are then combined in different ways to produce the devices that form the basis for digital computing, transistors, and diodes. Indeed, some quantum information technologies are based on a similar principle: adding defects and specific atoms within materials can produce qubits, the fundamental information storage units of quantum computing.
Published Chaos gives the quantum world a temperature


Two seemingly different areas of physics are related in subtle ways: Quantum theory and thermodynamics. How can the laws of thermodynamics arise from the laws of quantum physics? This question has now been pursued with computer simulations, which showed that chaos plays a crucial role: Only where chaos prevails do the well-known rules of thermodynamics follow from quantum physics.
Published Quantum dots at room temp, using lab-designed protein



Quantum dots are normally made in industrial settings with high temperatures and toxic, expensive solvents -- a process that is neither economical nor environmentally friendly. But researchers have now pulled off the process at the bench using water as a solvent, making a stable end-product at room temperature. Their work opens the door to making nanomaterials in a more sustainable way by demonstrating that protein sequences not derived from nature can be used to synthesize functional materials.
Published A peculiar protected structure links Viking knots with quantum vortices



Mathematical analysis identifies a vortex structure that is impervious to decay.
Published Curved spacetime in the lab


In a laboratory experiment, researchers have succeeded in realizing an effective spacetime that can be manipulated. In their research on ultracold quantum gases, they were able to simulate an entire family of curved universes to investigate different cosmological scenarios and compare them with the predictions of a quantum field theoretical model.
Published New quantum dots study uncovers implications for biological imaging


Researchers report the synthesis of semiconductor 'giant' core-shell quantum dots with record-breaking emissive lifetimes. In addition, the lifetimes can be tuned by making a simple alteration to the material's internal structure.
Published New instrument measures supercurrent flow, data has applications in quantum computing


An extreme-scale nanoscope is beginning to collect data about how pulses of light at trillions of cycles per second can control supercurrents in materials. The instrument could one day help optimize superconducting quantum bits, which are at the heart of quantum computing, a new and developing technology.
Published Changing the color of quantum light on an integrated chip


Recently, researchers have developed an integrated electro-optic modulator that can efficiently change the frequency and bandwidth of single photons. The device could be used for more advanced quantum computing and quantum networks.
Published An exotic interplay of electrons


Water that simply will not freeze, no matter how cold it gets -- a research group has discovered a quantum state that could be described in this way. Experts have managed to cool a special material to near absolute zero temperature. They found that a central property of atoms -- their alignment -- did not 'freeze', as usual, but remained in a 'liquid' state. The new quantum material could serve as a model system to develop novel, highly sensitive quantum sensors.
Published Physicists observe wormhole dynamics using a quantum computer



Scientists have developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole.
Published Pulses driven by artificial intelligence tame quantum systems



Machine learning drives self-discovery of pulses that stabilize quantum systems in the face of environmental noise.
Published New quantum computing feat is a modern twist on a 150-year-old thought experiment


New research demonstrates a 20x improvement in resetting a quantum bit to its '0' state, using a modern version of the 'Maxwell's demon'.