Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Biology: Molecular
Published A better way to make RNA drugs (via sciencedaily.com) Original source
RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Muscle machine: How water controls the speed of muscle contraction (via sciencedaily.com) Original source
The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality (via sciencedaily.com) Original source
Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Opening the right doors: 'Jumping gene' control mechanisms revealed (via sciencedaily.com) Original source
International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin (via sciencedaily.com) Original source
An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Atlas of proteins reveals inner workings of cells (via sciencedaily.com) Original source
Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published Big gain in battle against harmful bacteria (via sciencedaily.com) Original source
An unexpected find has enabled important progress to be made in the battle against harmful bacteria.
Published New one-step method to make multiple edits to a cell's genome (via sciencedaily.com) Original source
A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published New bio-based tool quickly detects concerning coronavirus variants (via sciencedaily.com) Original source
Researchers have developed a bioelectric device that can detect and classify new variants of coronavirus to identify those that are most harmful. It has the potential to do the same with other viruses, as well.
Published GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins (via sciencedaily.com) Original source
Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.
Published Never-before-seen view of gene transcription captured (via sciencedaily.com) Original source
New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces? (via sciencedaily.com) Original source
A new study offers new insights into the evolution of foldable proteins.
Published Researchers uncover key mechanisms in chromosome structure development (via sciencedaily.com) Original source
Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published A new breakthrough in understanding regeneration in a marine worm (via sciencedaily.com) Original source
The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Research shows how RNA 'junk' controls our genes (via sciencedaily.com) Original source
Researchers have made a significant advance in understanding how genes are controlled in living organisms. The new study focuses on critical snippets of RNA in the tiny, transparent roundworm Caenorhabditis elegans (C. elegans). The study provides a detailed map of the 3'UTR regions of RNA in C. elegans. 3'UTRs (untranslated regions) are segments of RNA involved in gene regulation.
Published Proteins and fats can drive insulin production for some, paving way for tailored nutrition (via sciencedaily.com) Original source
When it comes to managing blood sugar levels, most people think about counting carbs. But new research shows that, for some, it may be just as important to consider the proteins and fats in their diet. The study is the first large-scale comparison of how different people produce insulin in response to each of the three macronutrients: carbohydrates (glucose), proteins (amino acids) and fats (fatty acids). The findings reveal that production of the blood sugar-regulating hormone is much more dynamic and individualized than previously thought, while showing for the first time a subset of the population who are hyper-responsive to fatty foods.
Published Degradation of cell wall key in the spread of antibiotic resistance (via sciencedaily.com) Original source
A study provides new clues in the understanding of how antibiotic resistance spreads. The study shows how an enzyme breaks down the bacteria's protective outer layer, the cell wall, and thus facilitates the transfer of genes for resistance to antibiotics.
Published Researchers thwart resistant bacteria's strategy (via sciencedaily.com) Original source
Bacteria are experts at evolving resistance to antibiotics. One resistance strategy is to cover their cell walls in sticky and gooey biofilm that antibiotics cannot penetrate. A new discovery could put a stop to this strategy.
Published New deep-learning model outperforms Google AI system in predicting peptide structures (via sciencedaily.com) Original source
Researchers have developed a deep-learning model, called PepFlow, that can predict all possible shapes of peptides -- chains of amino acids that are shorter than proteins, but perform similar biological functions. Peptides are known to be highly flexible, taking on a wide range of folding patterns, and are thus involved in many biological processes of interest to researchers in the development of therapeutics.
Published A promising weapon against measles (via sciencedaily.com) Original source
What happens when measles virus meets a human cell? The viral machinery unfolds in just the right way to reveal key pieces that let it fuse itself into the host cell membrane.