Showing 20 articles starting at article 661
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Engineering: Graphene
Published The cod population off the coast of Sweden is not extinct



Through DNA analyses, researchers have identified that there are still juvenile coastal cod off the west coast of Sweden. However, it is still difficult to find any mature adult cod in the area.
Published Marine reserves unlikely to restore marine ecosystems


Protected marine areas are one of the essential tools for the conservation of natural resources affected by human impact -- mainly fishing --, but, are they enough to recover the functioning of these systems? A study now highlights the limitations of marine reserves in restoring food webs to their pristine state prior to the impact of intensive fishing.
Published Caribou have been using same Arctic calving grounds for 3,000 years


Caribou have been using the same Arctic calving grounds for more than 3,000 years. Female caribou shed their antlers within days of giving birth, leaving behind a record of their annual travels across Alaska and Canada's Yukon that persists on the cold tundra for hundreds or even thousands of years. Researchers recovered antlers that have sat undisturbed on the arctic tundra since the Bronze Age.
Published Why microbes in the deep ocean live without sunlight



A new study reverses the idea that the bulk of life in the ocean is fueled by photosynthesis via sunshine, revealing that many ocean microbes in fact get their energy from hydrogen and carbon monoxide. It has always been a mystery as to how microbes growing in deepest parts of the sea survive, with no sunlight. A new study shows that a distinct process called chemosynthesis -- growth using inorganic compounds -- fuels microbes in these darkest depths.
Published Shark bites tied for 10-year low in 2022 but spiked in regional hotspots



The number of unprovoked shark attacks worldwide decreased last year, tying with 2020 for the fewest number of reported incidents in the last 10 years. There were a total of 57 unprovoked bites in 2022, most of which occurred in the United States and Australia. Of these, five attacks were fatal, down from nine deaths in 2021 and 10 the year prior.
Published How species partnerships evolve


Biologists explored how symbiotic relationships between species evolve to become specific or general, cooperative or antagonistic.
Published New research computes first step toward predicting lifespan of electric space propulsion systems



Electric space propulsion systems use energized atoms to generate thrust. The high-speed beams of ions bump against the graphite surfaces of the thruster, eroding them with each hit, and are the systems' primary lifetime-limiting factor. Researchers used data from low-pressure chamber experiments and large-scale computations to develop a model to better understand the effects of ion erosion on carbon surfaces -- the first step in predicting its failure.
Published Novel device enables high-resolution observation of liquid phase dynamic processes at nanoscale


In situ observation and recording of important liquid-phase electrochemical reactions in energy devices is crucial for the advancement of energy science. A research team has recently developed a novel, tiny device to hold liquid specimens for transmission electron microscopy (TEM) observation, opening the door to directly visualizing and recording complex electrochemical reactions at nanoscale in real-time at high resolution. The research team believes that this innovative method will shed light on strategies for fabricating a powerful research tool for uncovering the mysteries of electrochemical processes in the future.
Published Superconductivity switches on and off in 'magic-angle' graphene


Physicists have found a new way to switch superconductivity on and off in magic-angle graphene. The discovery could lead to ultrafast, energy-efficient superconducting transistors for 'neuromorphic' electronics that operate similarly to the rapid on/off firing of neurons in the human brain.
Published Researchers can 'see' crystals perform their dance moves


Researchers already knew the atoms in perovskites react favorably to light. Now they've seen precisely how the atoms move when the 2D materials are excited with light. Their study details the first direct measurement of structural dynamics under light-induced excitation in 2D perovskites.
Published Scientists observe 'quasiparticles' in classical systems


Quasiparticles -- long-lived particle-like excitations -- are a cornerstone of quantum physics, with famous examples such as Cooper pairs in superconductivity and, recently, Dirac quasiparticles in graphene. Now, researchers have discovered quasiparticles in a classical system at room temperature: a two-dimensional crystal of particles driven by viscous flow in a microfluidic channel. Coupled by hydrodynamic forces, the particles form stable pairs -- a first example of classical quasiparticles, revealing deep links between quantum and classical dissipative systems.
Published Physicists solve mystery of two-dimensional quasicrystal formation from metal oxides


The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team has now solved the riddle of two-dimensional quasicrystal formation from metal oxides.
Published Recyclable mobile phone batteries a step closer with rust-busting invention


Mobile phone batteries with a lifetime up to three times longer than today's technology could be a reality thanks to a recent innovation.
Published Electronic nose: Sensing the odor molecules on graphene surface layered with self-assembled peptides


Graphene-based olfactory sensors that can detect odor molecules based on the design of peptide sequences were recently demonstrated. The findings indicated that graphene field-effect transistors (GFETs) functionalized with designable peptides can be used to develop electronic devices that mimic olfactory receptors and emulate the sense of smell by selectively detecting odor molecules.
Published Discovery of a new form of carbon called Long-range Ordered Porous Carbon (LOPC)


The most well-known forms of carbon include graphite and diamond, but there are other more exotic nanoscale allotropes of carbon as well. These include graphene and fullerenes, which are sp2 hybridized carbon with zero (flat-shaped) or positive (sphere-shaped) curvatures. Researchers now report the discovery of a new form of carbon formed by heating fullerenes with lithium nitride.
Published Humidity may be the key to super-lubricity 'switch'


A material state known as super-lubricity, where friction between two contacting surfaces nearly vanishes, is a phenomenon that materials researchers have studied for years due to the potential for reducing the energy cost and wear and tear on devices, two major drawbacks of friction. However, there are times when friction is needed within the same device, and the ability to turn super-lubricity on and off would be a boon for multiple practical engineering applications.
Published Researchers discover new process to create freestanding membranes of 'smart' materials


A team has developed a new method for making nano-membranes of 'smart' materials, which will allow scientists to harness their unique properties for use in devices such as sensors and flexible electronics.
Published Human brain organoids implanted into mouse cortex respond to visual stimuli for first time


A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals' cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
Published At the edge of graphene-based electronics


Researchers developed a new graphene-based nanoelectronics platform compatible with conventional microelectronics manufacturing, paving the way for a successor to silicon.
Published Lucky find! How science behind epidemics helped physicists to develop state-of-the-art conductive paint


Scientists demonstrate how a highly conductive paint coating that they have developed mimics the network spread of a virus through a process called 'explosive percolation' -- a mathematical process which can also be applied to population growth, financial systems and computer networks, but which has not been seen before in materials systems. The finding was a serendipitous development as well as a scientific first for the researchers.