Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Biology: Marine, Physics: Quantum Physics
Published Marine heat waves trigger shift in hatch dates and early growth of Pacific cod



Marine heat waves appear to trigger earlier reproduction, high mortality in early life stages and fewer surviving juvenile Pacific cod in the Gulf of Alaska, a new study shows. These changes in the hatch cycle and early growth patterns persisted in years following the marine heat waves, which could have implications for the future of Gulf of Alaska Pacific cod, an economically and culturally significant species.
Published Researchers find new multiphoton effect within quantum interference of light



An international team of researchers has disproved a previously held assumption about the impact of multiphoton components in interference effects of thermal fields (e.g. sunlight) and parametric single photons (generated in non-linear crystals).
Published Don't blame the sharks: Why more hooked tarpon are being eaten



In wave-making research, a team of biologists has quantified the rate at which great hammerhead sharks are eating Atlantic tarpon hooked by anglers at Bahia Honda, Florida -- one of the prime tarpon fishing spots in the Florida Keys.
Published New research sheds light on a phenomenon known as 'false vacuum decay'



Scientists have produced the first experimental evidence of vacuum decay.
Published The megalodon was less mega than previously believed



A new study shows the Megalodon, a gigantic shark that went extinct 3.6 million years ago, was more slender than earlier studies suggested. This finding changes scientists' understanding of Megalodon behavior, ancient ocean life, and why the sharks went extinct.
Published Towards the quantum of sound



A team of scientists has succeeded in cooling traveling sound waves in wave-guides considerably further than has previously been possible using laser light. This achievement represents a significant move towards the ultimate goal of reaching the quantum ground state of sound in wave-guides. Unwanted noise generated by the acoustic waves at room temperature can be eliminated. This experimental approach both provides a deeper understanding of the transition from classical to quantum phenomena of sound and is relevant to quantum communication systems and future quantum technologies.
Published Sea otters helped prevent widespread California kelp forest declines over the past century



The study reveals dramatic regional kelp canopy changes along the California coast over a 100-year period. During this time there was a significant increase in kelp forest canopy along the central coast, the only region of California where southern sea otters survived after being hunted nearly to extinction for their fur in the 1800s. Contrastingly, kelp canopy decreased in northern and southern regions. At the century scale, the species' favorable impact on kelp forests along the central coast nearly compensated for the kelp losses along both northern and southern California resulting in only a slight overall decline statewide during this period.
Published Unlocking the secrets of quasicrystal magnetism: Revealing a novel magnetic phase diagram



Non-Heisenberg-type approximant crystals have many interesting properties and are intriguing for researchers of condensed matter physics. However, their magnetic phase diagrams, which are crucial for realizing their potential, remain completely unknown. Now, a team of researchers has constructed the magnetic phase diagram of a non-Heisenberg Tsai-type 1/1 gold-gallium-terbium approximant crystal. This development marks a significant step forward for quasicrystal research and for the realization of magnetic refrigerators and spintronic devices.
Published Chemists create a 2D heavy fermion



Researchers have synthesized the first 2D heavy fermion. The material, a layered intermetallic crystal composed of cerium, silicon, and iodine (CeSiI), has electrons that are 1000x heavier and is a new platform to explore quantum phenomena.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published New technology for conducting deep-sea research on fragile organisms



Scientists have successfully demonstrated new technologies that can obtain preserved tissue and high-resolution 3D images within minutes of encountering some of the most fragile animals in the deep ocean.
Published Pacific kelp forests are far older that we thought



Fossils of kelp along the Pacific Coast are rare. Until now, the oldest fossil dated from 14 million years ago, leading to the view that today's denizens of the kelp forest -- marine mammals, urchins, sea birds -- coevolved with kelp. A recent amateur discovery pushes back the origin of kelp to 32 million years ago, long before these creatures appeared. A new analysis suggests the first kelp grazers were extinct, hippo-like animals called desmostylians.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Key moment in the evolution of life on Earth captured in fossils



New research has precisely dated some of the oldest fossils of complex multicellular life in the world, helping to track a pivotal moment in the history of Earth when the seas began teeming with new lifeforms -- after four billion years of containing only single-celled microbes.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published Scientists uncover ocean's intricate web of microbial interactions across depths



An international team of scientists has uncovered the ocean's intricate web of microbial interactions across depths. Their research provides crucial insights into the functioning of ocean ecosystems.
Published Bridging light and electrons



Researchers have merged nonlinear optics with electron microscopy, unlocking new capabilities in material studies and the control of electron beams.
Published Generating stable qubits at room temperature



Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.