Showing 20 articles starting at article 601

< Previous 20 articles        Next 20 articles >

Categories: Biology: Marine, Physics: Quantum Computing

Return to the site home page

Biology: Marine Biology: Molecular Ecology: Extinction Ecology: General Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems
Published

Researchers unearth a new process by which algae pass on nurtrients to their coral host      (via sciencedaily.com) 

Researchers have identified a new pathway by which sugar is released by symbiotic algae. This pathway involves the largely overlooked cell wall, showing that this structure not only protects the cell but plays an important role in symbiosis and carbon circulation in the ocean.

Biology: Marine Biology: Zoology Ecology: Sea Life Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Barnacles may help reveal location of lost Malaysia Airlines flight MH370      (via sciencedaily.com)     Original source 

Geoscientists have created a new method that can reconstruct the drift path and origin of debris from flight MH370, an aircraft that went missing over the Indian Ocean in 2014 with 239 passengers and crew. 

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Sci­en­tists develop fermionic quan­tum pro­ces­sor      (via sciencedaily.com) 

Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.

Biology: Marine Ecology: Animals Ecology: Extinction Ecology: Sea Life Environmental: Ecosystems Geoscience: Earth Science
Published

Vegetarian diet of corals explains age-old mystery dating back to Darwin      (via sciencedaily.com)     Original source 

A new study has revealed why coral reefs can thrive in seemingly nutrient poor water, a phenomenon that has fascinated scientists since Charles Darwin.

Biology: Marine Biology: Zoology Ecology: Sea Life Offbeat: Plants and Animals
Published

This fish doesn't just see with its eyes -- it also sees with its skin      (via sciencedaily.com)     Original source 

Without a mirror, it can be hard to tell if you're blushing, or have spinach in your teeth. But one color-changing fish has evolved a clever way to keep watch on the parts of itself that lie outside its field of view -- by sensing light with its skin.

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics Space: General
Published

Want to know how light works? Try asking a mechanic      (via sciencedaily.com) 

Physicists use a 350-year-old theorem that explains the workings of pendulums and planets to reveal new properties of light waves.

Biology: Evolutionary Biology: Marine Ecology: Invasive Species Ecology: Sea Life Paleontology: Fossils Paleontology: General
Published

The modern sea spider had started to diversify by the Jurassic, study finds      (via sciencedaily.com)     Original source 

An extremely rare collection of 160-million-year-old sea spider fossils from Southern France are closely related to living species, unlike older fossils of their kind.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum physicists simulate super diffusion on a quantum computer      (via sciencedaily.com) 

Quantum physicists have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer. This is the first step in doing highly challenging quantum transport calculations on quantum hardware and, as the hardware improves over time, such work promises to shed new light in condensed matter physics and materials science.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Unlocking chaos: Ultracold quantum gas reveals insights into wave turbulence      (via sciencedaily.com) 

In the intricate realm of wave turbulence, where predictability falters and chaos reigns, a groundbreaking study has emerged. The new research explores the heart of wave turbulence using an ultracold quantum gas, revealing new insights that could advance our understanding of non-equilibrium physics and have significant implications for various fields.

Archaeology: General Biology: Marine
Published

Sea sequin 'bling' links Indonesian islands' ancient communities      (via sciencedaily.com)     Original source 

Microscopic analysis has revealed that trends in body ornamentation were shared across Indonesian islands.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Switching 'spin' on and off (and up and down) in quantum materials at room temperature      (via sciencedaily.com) 

Researchers have found a way to control the interaction of light and quantum 'spin' in organic semiconductors, that works even at room temperature.

Computer Science: General Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Carbon-based quantum technology      (via sciencedaily.com) 

Graphene nanoribbons have outstanding properties that can be precisely controlled. Researchers have succeeded in attaching electrodes to individual atomically precise nanoribbons, paving the way for precise characterization of the fascinating ribbons and their possible use in quantum technology.

Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop a unique quantum mechanical approach to determining metal ductility      (via sciencedaily.com) 

A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.

Chemistry: Organic Chemistry Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Arrays of quantum rods could enhance TVs or virtual reality devices      (via sciencedaily.com) 

Using scaffolds of folded DNA, engineers assembled arrays of quantum rods with desirable photonic properties that could enable them to be used as highly efficient micro-LEDs for televisions or virtual reality devices.

Biology: Evolutionary Biology: Marine Paleontology: Fossils Paleontology: General
Published

Evolving elegance: Scientists connect beauty and safeguarding in ammonoid shells      (via sciencedaily.com)     Original source 

With 350 million years of evolution culminating in almost two centuries of scientific discourse, a new hypothesis emerges. Researchers propose a new explanation for why ammonoids evolved a highly elaborate, fractal-like geometry within their shells. Their analysis shows that the increasing complexity of shell structures provided a distinct advantage by offering improved protection against predators.

Biology: Marine Ecology: Sea Life Geoscience: Environmental Issues Geoscience: Oceanography
Published

Microplastics found embedded in tissues of whales and dolphins      (via sciencedaily.com)     Original source 

Microscopic plastic particles have been found in the fats and lungs of two-thirds of the marine mammals in a graduate student's study of ocean microplastics. The presence of polymer particles and fibers in these animals suggests that microplastics can travel out of the digestive tract and lodge in the tissues.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Potential application of unwanted electronic noise in semiconductors      (via sciencedaily.com) 

Random telegraph noise (RTN) in semiconductors is typically caused by two-state defects. Two-dimensional (2D) van der Waals (vdW) layered magnetic materials are expected to exhibit large fluctuations due to long-range Coulomb interaction; importantly, which could be controlled by a voltage compared to 3D counterparts having large charge screening. Researchers reported electrically tunable magnetic fluctuations and RTN signal in multilayered vanadium-doped tungsten diselenide (WSe2) by using vertical magnetic tunneling junction devices. They identified bistable magnetic states in the 1/f2 RTNs in noise spectroscopy, which can be further utilized for switching devices via voltage polarity.