Showing 20 articles starting at article 561

< Previous 20 articles        Next 20 articles >

Categories: Biology: Marine, Physics: Optics

Return to the site home page

Biology: Marine Biology: Zoology Ecology: Extinction Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

This Japanese 'dragon' terrorized ancient seas      (via sciencedaily.com)     Original source 

Researchers have described a Japanese mosasaur the size of a great white shark that terrorized Pacific seas 72 million years ago. The mosasaur was named for the place where it was found, Wakayama Prefecture. Researchers call it the Wakayama Soryu, which means blue dragon.

Engineering: Nanotechnology Physics: Optics
Published

In a new light -- new approach overcomes long-standing limitations in optics      (via sciencedaily.com)     Original source 

When you look up at the sky and see clouds of wondrous shapes, or struggle to peer through dense, hazy fog, you're seeing the results of 'Mie scattering', which is what happens with light interacts with particles of a certain size. There is a growing body of research that aims to manipulate this phenomenon and make possible an array of exciting technologies. Researchers have now developed a new means of manipulating Mie scattering from nanostructures.

Engineering: Nanotechnology Physics: General Physics: Optics
Published

Chance twists ordered carbon nanotubes into 'tornado films'      (via sciencedaily.com)     Original source 

Scientists have developed two new methods to create ordered carbon nanotube films with either a left- or right-handed chiral pattern.

Chemistry: Biochemistry Physics: Optics
Published

Conjoined 'racetracks' make new optical device possible      (via sciencedaily.com)     Original source 

Kerry Vahala and collaborators from UC Santa Barbara have found a unique solution to an optics problem.

Physics: General Physics: Optics
Published

Hybrid device significantly improves existing, ubiquitous laser technology      (via sciencedaily.com)     Original source 

Researchers have developed a chip-scale laser source that enhances the performance of semiconductor lasers while enabling the generation of shorter wavelengths. This pioneering work represents a significant advance in the field of photonics, with implications for telecommunications, metrology, and other high-precision applications.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

First observation of structures resulting from 3D domain swapping in antibody light chains      (via sciencedaily.com)     Original source 

Antibodies hold promise as therapeutic agents. However, their tendency to aggregate poses significant challenges to drug development. In a groundbreaking study, researchers now provide novel insights into the structure formed due to 3D domain swapping of the antibody light chain, the part of the antibody contributing to antigen binding. Their findings are expected to lead to improvements in antibody quality and the development of novel drugs.

Biology: Biochemistry Biology: General Biology: Marine Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Adapting to hypoxia: Zooplankton influence the efficiency of the biological carbon pump in the Humboldt Current off Peru      (via sciencedaily.com)     Original source 

Marine organisms play a crucial role in the global carbon cycle. Phytoplankton absorb carbon dioxide from the atmosphere and sequester it in organic matter that sinks to the deep ocean where it can be stored for long periods of time. Until now, this process -- the biological carbon pump -- was thought to be particularly efficient in oxygen-poor areas. A new study suggests that the influence of certain zooplankton species on the biological carbon pump has been underestimated.

Biology: Biochemistry Biology: General Biology: Marine Ecology: Extinction Ecology: Nature Ecology: Sea Life Paleontology: General
Published

Study reshapes understanding of mass extinction in Late Devonian era      (via sciencedaily.com)     Original source 

A recently published study puts forth a new theory that volcanic eruptions combined with widespread ocean detoxification pushed Earth's biology to a tipping point in the Late Devonian era, triggering a mass extinction.

Chemistry: Biochemistry Physics: Optics
Published

Training algorithm breaks barriers to deep physical neural networks      (via sciencedaily.com)     Original source 

Researchers have developed an algorithm to train an analog neural network just as accurately as a digital one, enabling the development of more efficient alternatives to power-hungry deep learning hardware.

Biology: General Biology: Marine Biology: Zoology Ecology: Extinction Ecology: Sea Life Environmental: Ecosystems Geoscience: Environmental Issues
Published

First global estimate of marine aquarium trade to encourage sustainable practices      (via sciencedaily.com)     Original source 

New research estimates 55 million marine organisms worth $2.15bn are sold in the marine aquarium trade each year, making it as valuable as global fisheries such as tuna.

Computer Science: General Physics: Optics
Published

Magnetization by laser pulse      (via sciencedaily.com)     Original source 

To magnetize an iron nail, one simply has to stroke its surface several times with a bar magnet. Yet, there is a much more unusual method: A team has discovered some time ago that a certain iron alloy can be magnetized with ultrashort laser pulses.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General Physics: Optics
Published

Polaritons open up a new lane on the semiconductor highway      (via sciencedaily.com)     Original source 

On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'

Physics: Acoustics and Ultrasound Physics: Optics
Published

Soundwaves harden 3D-printed treatments in deep tissues      (via sciencedaily.com)     Original source 

Engineers have developed a bio-compatible ink that solidifies into different 3D shapes and structures by absorbing ultrasound waves. Because the material responds to sound waves rather than light, the ink can be used in deep tissues for biomedical purposes ranging from bone healing to heart valve repair.

Biology: Biochemistry Biology: General Biology: Marine Biology: Zoology Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General
Published

Feathered friends can become unlikely helpers for tropical coral reefs facing climate change threat      (via sciencedaily.com)     Original source 

Tropical coral reefs are among our most spectacular ecosystems, yet a rapidly warming planet threatens the future survival of many reefs. However, there may be hope for some tropical reefs in the form of feathered friends. A new study has found that the presence of seabirds on islands adjacent to tropical coral reefs can boost coral growth rates on those reefs by more than double.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Physics
Published

Bowtie resonators that build themselves bridge the gap between nanoscopic and macroscopic      (via sciencedaily.com)     Original source 

Two nanotechnology approaches converge by employing a new generation of fabrication technology. It combines the scalability of semiconductor technology with the atomic dimensions enabled by self-assembly.

Biology: General Biology: Marine Biology: Microbiology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Greenhouse gases in oceans are altered by climate change impact on microbes      (via sciencedaily.com)     Original source 

The ocean is a global life-support system, and climate change causes such as ocean warming, acidification, deoxygenation, and nitrogen-deposition alter the delicate microbial population in oceans. The marine microbial community plays an important role in the production of greenhouse gases like nitrous oxide and methane. Scientists have explored the climate change impact on marine microbes. Their research helps raise awareness about climate change severity and the importance of ocean resources.

Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

The ocean may be storing more carbon than estimated in earlier studies      (via sciencedaily.com)     Original source 

The ocean's capacity to store atmospheric carbon dioxide is some 20% greater than the estimates contained in the latest IPCC report. Scientists looked at the role played by plankton in the natural transport of carbon from surface waters down to the seabed. Plankton gobble up carbon dioxide and, as they grow, convert it into organic tissue via photosynthesis.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Graphene Physics: Optics
Published

Chemists create organic molecules in a rainbow of colors      (via sciencedaily.com)     Original source 

Chemists have now come up with a way to make molecules known as acenes more stable, allowing them to synthesize acenes of varying lengths. Using their new approach, they were able to build molecules that emit red, orange, yellow, green, or blue light, which could make acenes easier to deploy in a variety of applications.