Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Environmental: Ecosystems
Published Balancing biodiversity, climate change, food for a trifecta


Scientists identify ways landowners in rural Brazil can find win-win situations with biodiversity and farming.
Published Invasive species are animals, too: Considering a humane approach


Invasive alien species are animals that may pose a threat to biodiversity, but it's time to deal with that threat in a more ethical way.
Published Large herbivores keep invasive plants at bay


Elephants, buffaloes and other heavy herbivores are effective against invasive plants. This is the conclusion of a new study that used Indian data, including data from the world's largest survey of wildlife based on camera traps. But smaller animals can do the same: you don't need elephants to get the same effect, the researchers point out.
Published Bit by bit, microplastics from tires are polluting our waterways


Urban stormwater particles from tire wear were the most prevalent microplastic a new study has found. The study showed that in stormwater runoff during rain approximately 19 out of every 20 microplastics collected were tire wear particles with anywhere from 2 to 59 particles per liter of water. Tire rubber contains up to 2500 chemicals with the contaminants that leach from tires considered more toxic to bacteria and microalgae than other plastic polymers.
Published Deriving the fundamental limit of heat current in quantum mechanical many-particle systems


Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.
Published Farms that create habitat key to food security and biodiversity


Diversified farming is an important complement to forest protections for reversing tropical biodiversity declines.
Published Blowing snow contributes to Arctic warming



Atmospheric scientists have discovered abundant fine sea salt aerosol production from wind-blown snow in the central Arctic, increasing seasonal surface warming.
Published Extreme El Niño weather saw South America's forest carbon sink switch off



Tropical forests in South America lose their ability to absorb carbon from the atmosphere when conditions become exceptionally hot and dry, according to new research. For a long time, tropical forests have acted as a carbon sink, taking more carbon out of the air than they release into it, a process that has moderated the impact of climate change. But new research found that in 2015 -- 2016, when an El Niño climate event resulted in drought and the hottest temperatures ever recorded, South American forests were unable to function as a carbon sink.
Published Invasive spotted lanternfly may not damage hardwood trees as previously thought



In 2012, when the spotted lanternfly (Lycorma delicatula) arrived in the U.S. from its home in China, scientists, land managers, and growers were understandably concerned that the sap-feeding insect would damage native and commercial trees. New long-term research has discovered that hardwood trees, such as maple, willow and birch, may be less vulnerable than initially thought.
Published New research explains 'Atlantification' of the Arctic Ocean



New research by an international team of scientists explains what's behind a stalled trend in Arctic Ocean sea ice loss since 2007. The findings indicate that stronger declines in sea ice will occur when an atmospheric feature known as the Arctic dipole reverses itself in its recurring cycle. The many environmental responses to the Arctic dipole are described in a recent article. This analysis helps explain how North Atlantic water influences Arctic Ocean climate. Scientists call it Atlantification.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published Arctic soil methane consumption may be larger than previously thought and increases in a drier climate



A recent study finds that Arctic soil methane uptake may be larger than previously thought, and that methane uptake increases under dry conditions and with availability of labile carbon substrates.
Published Coastal fisheries show surprising resilience to marine heat waves


New research found that marine heat waves -- prolonged periods of unusually warm ocean temperatures -- haven't had a lasting effect on the fish communities that feed most of the world. The finding is in stark contrast to the devastating effects seen on other marine ecosystems cataloged by scientists after similar periods of warming, including widespread coral bleaching and harmful algal blooms.
Published Using evidence from last Ice Age, scientists predict effects of rising seas on coastal habitats



The rapid sea level rise and resulting retreat of coastal habitat seen at the end of the last Ice Age could repeat itself if global average temperatures rise beyond certain levels, according to an analysis by an international team of scientists.
Published Emphasizing the need for energy independence could change the views of climate deniers, study says



Emphasising the need for energy independence and environmental stewardship could help to change people’s minds about the climate crisis, a new study says.
Published Can this forest survive? Predicting forest death or recovery after drought



New work could help forest managers predict which forests are most at risk from drought and which will survive.
Published A new way to capture and recycle carbon dioxide from industrial emissions


Carbon capture is a promising method to help slow climate change. With this approach, carbon dioxide (CO¬¬2) is trapped before it escapes into the atmosphere, but the process requires a large amount of energy and equipment. Now, researchers have designed a capture system using an electrochemical cell that can easily grab and release CO2. The device operates at room temperature and requires less energy than conventional, amine-based carbon-capture systems.
Published After Chernobyl nuclear accident: The wild boar paradox, finally solved



While the contamination of deer and roe deer decreased over time as expected, the measured levels of radioactivity in the meat of wild boar remained surprisingly high -- higher than the half-life of cesium would suggest. For many years, this 'wild boar paradox' was considered unsolved. Now an explanation has been found: It is a late aftermath of the nuclear weapons tests from the 1960s.
Published Want to fight climate change? Don't poach gorillas (or elephants, hornbills, toucans, etc.)



A new article found that overhunting of gorillas, elephants, and other large fruit-eating seed-dispersers make tropical forests less able to store or sequester carbon.
Published Hotter quantum systems can cool faster than initially colder equivalents


The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.