Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Environmental: Ecosystems, Physics: Quantum Computing
Published Climate change isn't producing expected increase in atmospheric moisture over dry regions



The warming climate has not lead to an expected increase in atmospheric moisture over arid and semi-arid regions of the world. The finding, which has surprised scientists, indicates that some regions may be even more vulnerable to future wildfires and extreme heat than projected.
Published Long live the graphene valley state



Researchers found evidence that bilayer graphene quantum dots may host a promising new type of quantum bit based on so-called valley states.
Published New AI makes better permafrost maps



New insights from artificial intelligence about permafrost coverage in the Arctic may soon give policy makers and land managers the high-resolution view they need to predict climate-change-driven threats to infrastructure such as oil pipelines, roads and national security facilities.
Published Stalagmites as climate archive



When combined with data from tree-ring records, stalagmites can open up a unique archive to study natural climate fluctuations, a research team has demonstrated. The researchers analyzed the isotopic composition of oxygen in a stalagmite formed from calcareous water in a cave in southern Germany. In conjunction with the data acquired from tree rings, they were able to reconstruct short-term climate fluctuations over centuries and correlate them with historically documented environmental events.
Published A new, rigorous assessment of OpenET accuracy for supporting satellite-based water management



Sustainable water management is an increasing concern in arid regions around the world, and scientists and regulators are turning to remote sensing tools like OpenET to help track and manage water resources. OpenET uses publicly available data produced by NASA and USGS Landsat and other satellite systems to calculate evapotranspiration (ET), or the amount of water lost to the atmosphere through soil evaporation and plant transpiration, at the level of individual fields. This tool has the potential to revolutionize water management, allowing for field-scale operational monitoring of water use, and a new study provides a thorough analysis of the accuracy of OpenET data for various crops and natural land cover types.
Published Climate change threatens global forest carbon sequestration, study finds



Climate change is causing Western U.S. forests to be less effective carbon sinks, even as it boosts the productivity of forests in the Eastern U.S., according to new research.
Published Chasing the light: Study finds new clues about warming in the Arctic



The Arctic, Earth's icy crown, is experiencing a climate crisis like no other. It's heating up at a furious pace -- four times faster than the rest of our planet. Researchers are pulling back the curtain on the reduction of sunlight reflectivity, or albedo, which is supercharging the Arctic's warming.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Solid-state qubits: Forget about being clean, embrace mess



New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.
Published Scientists uncover ocean's intricate web of microbial interactions across depths



An international team of scientists has uncovered the ocean's intricate web of microbial interactions across depths. Their research provides crucial insights into the functioning of ocean ecosystems.
Published More aerosol particles than thought are forming over Siberia, study finds



A new study finds that, contrary to previous beliefs, large amounts of aerosol particles can form over vast areas of the West Siberian taiga in the spring. When temperatures rise, this can have a significant impact on the climate.
Published Are bugs bugging humans or the other way around? Study reveals a few surprises



Research has determined key factors that impact biodiversity among spiders and insects in urban areas. The response of specific groups varied significantly, surprising the researchers. The study findings can help urban planners, landscapers, builders and homeowners make choices that increase biodiversity. Dozens of species previously unknown to science came to light through the study.
Published Human activity facilitates invasive plants' colonization in Mediterranean ecosystems



Some invasive plants can form persistent banks of seeds that remain under the soil for years, and this makes their eradication practically impossible. Over time, this invisible population of large quantities of living, buried plants -- in seed form -- will reoccupy ecosystems and displace the typical flora of the natural environment.
Published Beaches and dunes globally squeezed by roads and buildings



Beaches and dunes globally squeezed by roads and buildings. Beaches and dunes are becoming increasingly trapped between rising sea levels and infrastructure. Researchers found that today, when dropped on a random beach anywhere in the world, you only need to walk 390 meters (on average) to find the nearest road or building. And while that short walking distance may seem convenient if you want a day at the beach, it's bad news for our protection against rising sea levels, drinking water supplies and biodiversity.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater



The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.
Published Generating stable qubits at room temperature



Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.
Published First direct imaging of small noble gas clusters at room temperature



Scientists have succeeded in the stabilization and direct imaging of small clusters of noble gas atoms at room temperature. This achievement opens up exciting possibilities for fundamental research in condensed matter physics and applications in quantum information technology. The key to this breakthrough was the confinement of noble gas atoms between two layers of graphene.
Published Record heat in 2023 worsened global droughts, floods and wildfires



Record heat across the world profoundly impacted the global water cycle in 2023, contributing to severe storms, floods, megadroughts and bushfires, new research shows.
Published Red deer populations in Europe: More influenced by humans than by wolves and other predators



A new study shows that human hunting and land use have a decisive influence on red deer density in Europe. Red deer density is only reduced when wolves, lynx and bears co-occur at the same site.
Published A red knot's character is formed in first year of life



In any group of red knots, respective individuals exhibit a remarkable array of distinct character types. Birds with an exploratory character are motivated to investigate their environment and readily explore unfamiliar areas. Meanwhile, birds with inactive character types are content to remain in familiar territory. Interestingly, the birds do not appear to hatch with predetermined character types. Their characters are formed later, in the first year of life, as a result of their experiences in the Wadden Sea.