Showing 20 articles starting at article 21
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Space: The Solar System
Published Record-breaking recovery of rocks that originated in Earth's mantle could reveal secrets of planet's history



Scientists have recovered the first long section of rocks that originated in the Earth's mantle, the layer below the crust and the planet's largest component. The rocks will help unravel the mantle's role in the origins of life on Earth, the volcanic activity generated when it melts, and how it drives the global cycles of important elements such as carbon and hydrogen.
Published Findings from first archaeology project in space



The first-ever archeological survey in space has provided new insights into how astronauts use and adapt their living space on the International Space Station, which could influence the design of new space stations after the ISS is decommissioned.
Published Scientists lay out revolutionary method to warm Mars



Ever since we learned that the surface of planet Mars is cold and dead, people have wondered if there is a way to make it friendlier to life. The newly proposed method is over 5,000 times more efficient than previous schemes to globally warm Mars, representing a significant leap forward in our ability to modify the Martian environment.
Published Water delivered to the mantle by aluminum enriched hydrated slabs?



Researchers found a notable effect of aluminum on the sound velocities of superhydrous phase B, a dense hydrous magnesium silicate and potential host of water in the deep Earth. Their results suggest that aluminous phase B could explain seismic velocity anomalies in the Earth's mantle transition region and uppermost lower mantle.
Published Scientists uncover hidden forces causing continents to rise



Scientists have answered one of the most puzzling questions in plate tectonics: how and why 'stable' parts of continents gradually rise to form some of the planet's greatest topographic features.
Published Astronomers uncover risks to planets that could host life



A groundbreaking study has revealed that red dwarf stars can produce stellar flares that carry far-ultraviolet (far-UV) radiation levels much higher than previously believed.
Published Greenland fossil discovery reveals increased risk of sea-level catastrophe



Seeds, twigs, and insect parts found under two miles of ice confirm Greenland's ice sheet melted in the recent past, the first direct evidence that the center -- not just the edges -- of the two-mile-deep ice melted away in the recent geological past. The new research indicates that the giant ice sheet is more fragile than scientists had realized until the last few years -- and reveals increased risk of sea-level catastrophe in a warmer future.
Published New model refutes leading theory on how Earth's continents formed



Computational modeling shows that plate tectonics weren't necessary for early continents.
Published How the rising earth in Antarctica will impact future sea level rise



The rising earth beneath the Antarctic Ice Sheet will likely become a major factor in future sea level rise, a new study suggests.
Published Link between global warming and rising sea levels



A new study suggests that Earth's natural forces could substantially reduce Antarctica's impact on rising sea levels, but only if carbon emissions are swiftly reduced in the coming decades. By the same token, if emissions continue on the current trajectory, Antarctic ice loss could lead to more future sea level rise than previously thought.
Published Scientists pin down the origins of the moon's tenuous atmosphere



Scientists say they have identified the main process that formed the moon's atmosphere and continues to sustain it today. The team reports that the lunar atmosphere is primarily a product of 'impact vaporization.'
Published Key to rapid planet formation



Researchers have developed a new model to explain the formation of giant planets such as Jupiter, which furnishes deeper insights into the processes of planet formation and could expand our understanding of planetary systems.
Published Scientists devise method to secure Earth's biodiversity on the moon



New research led proposes a plan to safeguard Earth's imperiled biodiversity by cryogenically preserving biological material on the moon. The moon's permanently shadowed craters are cold enough for cryogenic preservation without the need for electricity or liquid nitrogen.
Published The rotation of a nearby star stuns astronomers



Astronomers have found that the rotational profile of a nearby star, V889 Herculis, differs considerably from that of the Sun. The observation provides insights into the fundamental stellar astrophysics and helps us understand the activity of the Sun, its spot structures and eruptions.
Published Recent volcanic 'fires' in Iceland triggered by storage and melting in crust



Scientists have detected geochemical signatures of magma pooling and melting beneath the subsurface during the 'Fagradalsfjall Fires', that began on Iceland's Reykjanes peninsula in 2021. Samples show that the start of the eruption began with massive pooling of magma, contrasting initial hypothesis for magma ascent straight from the mantle.
Published The corona is weirdly hot: Parker Solar Probe rules out one explanation



By diving into the sun's corona, NASA's Parker Solar Probe has ruled out S-shaped bends in the sun's magnetic field as a cause of the corona's searing temperatures.
Published A blue miracle: How sapphires formed in volcanoes



Sapphires are among the most precious gems, yet they consist solely of chemically 'contaminated' aluminum oxide, or corundum. It is widely assumed that these crystals with their characteristically blue color come from deep crustal rocks and accidentally ended up on the Earth's surface as magma ascended. Geoscientists have now been able to show that the sapphire grains found in the Eifel (Germany) formed in association with volcanism.
Published Space-trekking muscle tests drugs for microgravity-induced muscle impairment



A gentle rumble ran under a researcher's feet as a rocket carrying her research -- live, human muscle cells grown on scaffolds fixed on tiny chips -- lifted off, climbed, and disappeared into the sky to the International Space Station National Laboratory. These chips would help her better understand muscle impairment, often seen in astronauts and older adults, and test drugs to counter the condition.
Published New study supports stable mantle chemistry dating back to Earth's early geologic history and over its prodigious evolution



A new analysis of rocks thought to be at least 2.5 billion years old helps clarify the chemical history of Earth's mantle -- the geologic layer beneath the planet's crust. The findings hone scientists' understanding of Earth's earliest geologic processes, and they provide new evidence in a decades-long scientific debate about the geologic history of Earth. Specifically, the results provide evidence that the oxidation state of the vast majority of Earth's mantle has remained stable through geologic time and has not undergone major transitions, contrary to what has been suggested previously by other researchers.
Published Images of nearest 'super-Jupiter' open a new window to exoplanet research



Using the James Webb Space Telescope (JWST), astronomers imaged a new exoplanet that orbits a star in the nearby triple system Epsilon Indi. The planet is a cold super-Jupiter exhibiting a temperature of around 0 degrees Celsius and a wide orbit comparable to that of Neptune around the Sun. This measurement was only possible thanks to JWST's unprecedented imaging capabilities in the thermal infrared. It exemplifies the potential of finding many more such planets similar to Jupiter in mass, temperature, and orbit. Studying them will improve our knowledge of how gas giants form and evolve in time.