Showing 20 articles starting at article 321

< Previous 20 articles        Next 20 articles >

Categories: Paleontology: Dinosaurs, Space: The Solar System

Return to the site home page

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: The Solar System
Published

New clues on the source of the universe's magnetic fields      (via sciencedaily.com) 

Researchers offer insight into the source of cosmic magnetic fields. The research team used models to show that magnetic fields may spontaneously arise in turbulent plasma. Their simulations showed that, in addition to generating new magnetic fields, the turbulence of those plasmas can also amplify magnetic fields once they've been generated, which helps explain how magnetic fields that originate on small scales can sometimes eventually reach to stretch across vast distances.

Space: Astronomy Space: Exploration Space: The Solar System
Published

New algorithm ensnares its first 'potentially hazardous' asteroid      (via sciencedaily.com) 

An asteroid discovery algorithm -- designed to uncover near-Earth asteroids for the Vera C. Rubin Observatory's upcoming 10-year survey of the night sky -- has identified its first 'potentially hazardous' asteroid, a term for space rocks in Earth's vicinity that scientists like to keep an eye on. The roughly 600-foot-long asteroid, designated 2022 SF289, was discovered during a test drive of the algorithm with the ATLAS survey in Hawaii. Finding 2022 SF289, which poses no risk to Earth for the foreseeable future, confirms that the next-generation algorithm, known as HelioLinc3D, can identify near-Earth asteroids with fewer and more dispersed observations than required by today's methods.

Space: Astronomy Space: Exploration Space: The Solar System
Published

James Webb Space Telescope sees Jupiter moons in a new light      (via sciencedaily.com) 

Last year, JWST made spectral observations of Ganymede and infrared observations of Io. Absorption lines of hydrogen peroxide at Ganymede's poles indicate radiolysis of water ice by charged particles funneled by the moon's magnetic field. Io had two major eruptions, one associated with a forbidden emission line of sulfur monoxide. The latter supports a theory that SO is produced at volcanic vents in a thin atmosphere that allows forbidden emission before collisions destroy the excited state.

Space: Astronomy Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

Hubble sees evaporating planet getting the hiccups      (via sciencedaily.com) 

A young planet whirling around a petulant red dwarf star is changing in unpredictable ways orbit-by-orbit. It is so close to its parent star that it experiences a consistent, torrential blast of energy, which evaporates its hydrogen atmosphere -- causing it to puff off the planet.

Offbeat: Space Space: Astronomy Space: Exploration Space: Structures and Features Space: The Solar System
Published

Using cosmic weather to study which worlds could support life      (via sciencedaily.com) 

As the next generation of giant, high-powered observatories begin to come online, a new study suggests that their instruments may offer scientists an unparalleled opportunity to discern what weather may be like on far-away exoplanets.

Biology: Evolutionary Paleontology: Dinosaurs Paleontology: General
Published

New archosaur species shows that precursor of dinosaurs and pterosaurs was armored      (via sciencedaily.com)     Original source 

Researchers have described a new species of armored reptile that lived near the time of the first appearance of dinosaurs. With bony plates on its backbone, this archosaur fossil reveals that armor was a boomerang trait in the story of dinosaur and pterosaur evolution: the group's ancestors were armored, but this characteristic was lost and then independently re-evolved multiple times later among specialized dinosaurs like ankylosaurs, stegosaurs, and others.

Space: Astronomy Space: Exploration Space: The Solar System
Published

In new space race, scientists propose geoarchaeology can aid in preserving space heritage      (via sciencedaily.com) 

The material record that currently exists on the moon is rapidly becoming at risk of being destroyed if proper attention isn't paid during the new space era, scientists say. They propose a new scientific subfield: planetary geoarchaeology, the study of how cultural and natural processes on Earth's moon, on Mars and across the solar system may be altering, preserving or destroying the material record of space exploration.

Offbeat: Space Space: Exploration Space: The Solar System
Published

Ancient, high-energy impacts could have fueled Venus volcanism      (via sciencedaily.com)     Original source 

A team has modeled the early impact history of Venus to explain how Earth's sister planet has maintained a youthful surface despite lacking plate tectonics. The team compared the early collision histories of the two bodies and determined that Venus likely experienced higher-speed, higher-energy impacts creating a super-heated core that promoted extended volcanism and resurfaced the planet.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features Space: The Solar System
Published

Galaxy J1135 reveals its water map      (via sciencedaily.com) 

Researchers look at water in galaxies, its distribution and in particular its changes of state from ice to vapor, as important markers indicating areas of increased energy, in which black holes and stars are formed. A new study has now revealed the distribution of water within the J1135 galaxy, which is 12 billion light years away and formed when the Universe was a 'teenager', 1.8 billion years after the Big Bang . This water map, with unprecedented resolution, is the first ever to be obtained for such a remote galaxy. The map can help scientists to understand the physical processes taking place within J1135 and shed light on the dynamics, still partially unclear, surrounding the formation of stars, black holes and galaxies themselves.

Offbeat: Space Space: Astronomy Space: Structures and Features Space: The Solar System
Published

Does this exoplanet have a sibling sharing the same orbit?      (via sciencedaily.com) 

Astronomers have found the possible 'sibling' of a planet orbiting a distant star. The team has detected a cloud of debris that might be sharing this planet's orbit and which, they believe, could be the building blocks of a new planet or the remnants of one already formed. If confirmed, this discovery would be the strongest evidence yet that two exoplanets can share one orbit.

Offbeat: Space Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

Unusual white dwarf star is made of hydrogen on one side and helium on the other      (via sciencedaily.com)     Original source 

In a first for white dwarfs, the burnt-out cores of dead stars, astronomers have discovered that at least one member of this cosmic family is two faced. One side of the white dwarf is composed of hydrogen, while the other is made up of helium.

Offbeat: Paleontology and Archeology Paleontology: Dinosaurs Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

Unusual fossil shows rare evidence of a mammal attacking a dinosaur      (via sciencedaily.com)     Original source 

Scientists have described an unusual fossil from around 125 million years ago in China that shows a dramatic moment in time when a carnivorous mammal attacked a larger plant-eating dinosaur. The two animals are locked in mortal combat, and it's among the first evidence to show actual predatory behavior by a mammal on a dinosaur. The fossil's presence challenges the view that dinosaurs had few threats from their mammal contemporaries during the Cretaceous, when dinosaurs were the dominant animals.

Space: Astronomy Space: Astrophysics Space: Structures and Features Space: The Solar System
Published

Astronomers discover striking evidence of 'unusual' stellar evolution      (via sciencedaily.com) 

Astronomers have found evidence that some stars boast unexpectedly strong surface magnetic fields, a discovery that challenges current models of how they evolve.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: The Solar System
Published

Giant swirling waves at edge of Jupiter's magnetosphere      (via sciencedaily.com) 

A team has found that NASA's Juno spacecraft orbiting Jupiter frequently encounters giant swirling waves at the boundary between the solar wind and Jupiter's magnetosphere. The waves are an important process for transferring energy and mass from the solar wind, a stream of charged particles emitted by the Sun, to planetary space environments.

Space: Astronomy Space: Astrophysics Space: Exploration Space: The Solar System
Published

When ET calls, can we be sure we're not being spoofed?      (via sciencedaily.com) 

In the search for extraterrestrial intelligence, alien radio signals would be swamped by interference from radio sources on Earth. To confirm, researchers point away from the source and then back. If it's still there, it may be interesting. Researchers have come up with a new method that looks for evidence the signal has passed through the interstellar medium. The technique will boost confidence in any candidate signal discovered in the future.

Space: Astronomy Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

Hubble views a galactic monster      (via sciencedaily.com) 

The NASA/ESA Hubble Space Telescope has captured a monster in the making in this observation of the exceptional galaxy cluster eMACS J1353.7+4329, which lies about eight billion light-years from Earth in the constellation Canes Venatici. This collection of at least two galaxy clusters is in the process of merging together to create a cosmic monster, a single gargantuan cluster acting as a gravitational lens.

Space: Astronomy Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

Astronomers identify the coldest star yet that emits radio waves      (via sciencedaily.com)     Original source 

Brown dwarf stars rarely emit radio waves. Here scientists have found the coldest star yet emitting at these long wave lengths. Understanding the science of 'ultracool brown dwarfs' will help deepen our knowledge of how stars evolve.

Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: Structures and Features Space: The Solar System
Published

James Webb Telescope catches glimpse of possible first-ever 'dark stars'      (via sciencedaily.com) 

Three bright objects initially identified as galaxies in observations from the James Webb Space Telescope might actually represent an exotic new form of star. If confirmed, the discovery would also shed light on the nature of dark matter.

Offbeat: Space Space: Astrophysics Space: Exploration Space: Structures and Features Space: The Solar System
Published

Rare, double-lobe nebula resembles overflowing cosmic 'jug'      (via sciencedaily.com)     Original source 

A billowing pair of nearly symmetrical loops of dust and gas mark the death throes of an ancient red-giant star. The resulting structure, said to resemble an old style of English jug, is a rarely seen bipolar reflection nebula. Evidence suggests that this object formed by the interactions between the dying red giant and a now-shredded companion star.

Physics: Quantum Computing Physics: Quantum Physics Space: Exploration Space: The Solar System
Published

Despite doubts from quantum physicists: Einstein's theory of relativity reaffirmed      (via sciencedaily.com)     Original source 

One of the most basic assumptions of fundamental physics is that the different properties of mass -- weight, inertia and gravitation -- always remain the same in relation to each other. Although all measurements to date confirm the equivalence principle, quantum theory postulates that there should be a violation. This inconsistency between Einstein's gravitational theory and modern quantum theory is the reason why ever more precise tests of the equivalence principle are particularly important. A team has now succeeded in proving with 100 times greater accuracy that passive and active gravitational mass are always equivalent -- regardless of the particular composition of the respective masses.