Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Space: The Solar System
Published Stench of a gas giant? Nearby exoplanet reeks of rotten eggs, and that's a good thing (via sciencedaily.com) Original source
An exoplanet infamous for its deadly weather has been hiding another bizarre feature -- it reeks of rotten eggs, according to a new study of data from the James Webb Space Telescope.
Published Moon 'swirls' could be magnetized by unseen magmas (via sciencedaily.com) Original source
Mysterious, light-colored swirls on Moon's surface could be rocks magnetized by magma activity underground, laboratory experiments confirm.
Published Machine learning could aid efforts to answer long-standing astrophysical questions (via sciencedaily.com) Original source
Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.
Published Organic material from Mars reveals the likely origin of life's building blocks (via sciencedaily.com) Original source
Two samples from Mars together deliver clear evidence of the origin of Martian organic material. The study presents solid evidence for a prediction made over a decade ago that could be key to understanding how organic molecules, the foundation of life, were first formed here on Earth.
Published This desert moss has the potential to grow on Mars (via sciencedaily.com) Original source
The desert moss Syntrichia caninervis is a promising candidate for Mars colonization thanks to its extreme ability to tolerate harsh conditions lethal to most life forms. The moss is well known for its ability to tolerate drought conditions, but researchers now report that it can also survive freezing temperatures as low as 196 C, high levels of gamma radiation, and simulated Martian conditions involving these three stressors combined. In all cases, prior dehydration seemed to help the plants cope.
Published New class of Mars quakes reveals daily meteorite strikes (via sciencedaily.com) Original source
An international team of researchers combine orbital imagery with seismological data from NASA's Mars InSight lander to derive a new impact rate for meteorite strikes on Mars. Seismology also offers a new tool for determining the density of Mars' craters and the age of different regions of a planet.
Published Shocked quartz reveals evidence of historical cosmic airburst (via sciencedaily.com) Original source
Researchers continue to expand the case for the Younger Dryas Impact hypothesis. The idea proposes that a fragmented comet smashed into the Earth's atmosphere 12,800 years ago, causing a widespread climatic shift that, among other things, led to the abrupt reversal of the Earth's warming trend and into an anomalous near-glacial period called the Younger Dryas.
Published Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample (via sciencedaily.com) Original source
Early analysis of the asteroid Bennu sample returned by NASA's OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth. The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world.
Published New evidence for how heat is transported below the sun's surface (via sciencedaily.com) Original source
Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.
Published Telltale greenhouse gases could signal alien activity (via sciencedaily.com) Original source
If aliens modified a planet in their solar system to make it warmer, we'd be able to tell. A new study identifies the artificial greenhouse gases that would be giveaways of a terraformed planet.
Published Marsquakes may help reveal whether liquid water exists underground on red planet (via sciencedaily.com) Original source
If liquid water exists today on Mars, it may be too deep underground to detect with traditional methods used on Earth. But listening to earthquakes that occur on Mars -- or marsquakes -- could offer a new tool in the search.
Published First of its kind detection made in striking new Webb image (via sciencedaily.com) Original source
For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.
Published Geologists expect Chang'e-6 lunar surface samples to contain volcanic rock and impact ejecta (via sciencedaily.com) Original source
On June 25, China's Chang'e-6 (CE-6) lunar probe is set to return to Earth, carrying the first surface samples collected from the farside of the Moon. In anticipation of this historic event, scientists are publishing their predictions for the unique materials that may be found in the CE-6 samples.
Published Star clusters observed within a galaxy in the early Universe (via sciencedaily.com) Original source
The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard (via sciencedaily.com) Original source
Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.
Published Titan's lakes may be shaped by waves (via sciencedaily.com) Original source
Geologists studied Titan's shorelines and showed through simulations that coastlines of the moon's methane- and ethane-filled seas have likely been shaped by waves. Until now, scientists have found indirect and conflicting signs of wave activity, based on Cassini images of Titan's surface.
Published Jupiter's great red spot is not the same one Cassini observed in 1600s (via sciencedaily.com) Original source
Jupiter's iconic Great Red Spot has persisted for at least 190 years and is likely a different spot from the one observed by the astronomer Giovanni Domenico Cassini in 1665, a new study reports. The Great Red Spot we see today likely formed because of an instability in the planet's intense atmospheric winds, producing a long, persistent atmospheric cell, the study also finds.
Published Watery planets orbiting dead stars may be good candidates for studying life -- if they can survive long enough (via sciencedaily.com) Original source
The small footprint and dim light of white dwarfs, remnants of stars that have burned through their fuel, may make excellent backdrops for studying planets with enough water to harbor life. The trick is spotting the shadow of a planet against a former star that has withered to a fraction of its size and finding that it's a planet that has kept its water oceans for billions of years even after riding out the star's explosive and violent final throes. A new study of the dynamics of white dwarf systems suggests that, in theory, some watery planets may indeed thread the celestial needles necessary to await discovery and closer scrutiny.
Published Mysterious mini-Neptunes (via sciencedaily.com) Original source
This study discovered mini-Neptunes around four red dwarfs using observations from a global network of ground-based telescopes and the TESS space telescope. These four mini-Neptunes are close to their parent stars, and the three of them are likely to be in eccentric orbits.
Published New biomarker database designed to improve astronaut health may also be useful to earthlings (via sciencedaily.com) Original source
As space travel becomes more frequent, a new biomarker tool was developed by an international team of researchers to help improve the growing field of aerospace medicine and the health of astronauts.