Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Geoscience: Volcanoes
Published Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes


On the short-lived island of Hunga Tonga Hunga Ha'apai, researchers discovered a unique microbial community that metabolizes sulfur and atmospheric gases, similar to organisms found in deep sea vents or hot springs.
Published Researchers uncover secrets on how Alaska's Denali Fault formed


New findings begin to fill major gaps in understanding about how geological faults behave and appear as they deepen, and they could eventually help lead future researchers to develop better earthquake models on strike-slip faults, regions with frequent and major earthquakes.
Published The adverse health effects of disaster-related trauma


A new study has found that individuals from disadvantaged backgrounds are more likely to experience disaster-related home loss, and they are also more likely to develop functional limitations following the disaster.
Published Hawai'i earthquake swarm caused by magma moving through 'sills'


A machine-learning algorithm reveals the shape of massive subterranean structures linking active volcanoes.
Published Predicting lava flow


A team is collecting data that will be used to create models that can help improve lava flow forecasting tools that are useful in determining how hazards impact populations. One such tool, known as MOLASSES, is a simulation engine that forecasts inundation areas of lava flow.
Published Using drones to monitor volcanoes: Researchers analyze volcanic gases with the help of ultra-lightweight sensor systems


The main gases released by volcanoes are water vapor, carbon dioxide, and sulfur dioxide. Analyzing these gases is one of the best ways of obtaining information on volcanic systems and the magmatic processes that are underway. The ratio of carbon dioxide levels to those of sulfur dioxide can even reveal the likelihood of an impending eruption. Drones are employed to carry the necessary analytical systems to the site of activity.
Published Study shows how machine learning could predict rare disastrous events, like earthquakes or pandemics


Researchers suggest how scientists can circumvent the need for massive data sets to forecast extreme events with the combination of an advanced machine learning system and sequential sampling techniques.
Published Detrimental secondary health effects after disasters and pandemics


A study has shown that the prevalence of non-communicable diseases, which included hypertension, hyperlipidemia, diabetes, and mental disorders, increased after the Fukushima disaster and the COVID-19 outbreak. These findings emphasize the importance of improving post-disaster health promotion strategies and recommendations.
Published Signals from the ionosphere could improve tsunami forecasts


The powerful volcanic eruption in January 2022 created ripple effects throughout the world's atmosphere and oceans. Analysis of the Hunga Tonga eruption shows how signals from the ionosphere could help monitor future volcanoes and tsunamis.
Published Finding faults deeply stressful


Evidence that a complete stress release may have contributed to the 2011 Tohoku earthquake that broke records. Both sedimentary formations above and below the plate boundary fault lie in the stress state of normal faults in which vertical stress is greater than maximum horizontal stress. The new data show good consistency with previous results above the fault -- at the boundary between the North American plate and the subducting Pacific plate -- suggesting that combining geophysical data and core samples to comprehensively investigate stress states is effective.
Published Landslide risk remains years after even a weak earthquake


Satellite observations have revealed that weak seismic ground shaking can trigger powerful landslide acceleration -- even several years after a significant earthquake.
Published Earthquake lab experiments produce aftershock-like behavior


Earthquakes are notoriously hard to predict, and so too are the usually less-severe aftershocks that often follow a major seismic event.
Published Exploring the deep: Drones offer new ways to monitor sea floor


Researchers have developed a novel method for measuring the earth's crust on the seafloor. A lightweight geodetic measurement device was mounted on a sea-surface landing unmanned aerial vehicle (UAV). The mobility of this new system will enable rapid, efficient collection of real-time deep seafloor information, which is critical for understanding earthquake risk, as well as various other oceanographic observations.
Published Monitoring 'frothy' magma gases could help evade disaster


Volcanic eruptions are dangerous and difficult to predict. A team has found that the ratio of atoms in specific gases released from volcanic fumaroles (gaps in the Earth's surface) can provide an indicator of what is happening to the magma deep below -- similar to taking a blood test to check your health. This can indicate when things might be 'heating up.' Specifically, changes in the ratio of argon-40 and helium-3 can indicate how frothy the magma is, which signals the risk of different types of eruption. Understanding which ratios of which gases indicate a certain type of magma activity is a big step. Next, the team hopes to develop portable equipment which can provide on-site, real-time measurements for a 24/7 volcanic activity monitoring and early warning system.
Published Using 1980s environmental modeling to mitigate future disasters: Could Japan's 3/11 disaster have been prevented?


On March 11, 2011, multiple catastrophes in Japan were triggered by the Great East Japan Earthquake, including the nuclear accident at the Fukushima Daiichi Nuclear Power Plant. This event, also known as the 3/11 disaster, is what is known as a compound disaster. Now that over a decade has passed since this event, researchers are investigating how to prevent the next compound disaster.
Published Report outlines plans for major research effort on subduction zone geologic hazards


Subduction zones, where one tectonic plate slides beneath another, produce the most devastating seismic, volcanic, and landslide hazards on the planet. A new report presents an ambitious plan to make major advances in understanding subduction zone hazards by bringing together a diverse community of scientists in a long-term collaborative effort, deploying new instrumentation in subduction zones, and developing more sophisticated and accurate models.
Published Water cutoff countermeasures using disaster emergency wells


Groundwater is considered both an environmental and industrial resource, but a new study indicates it is also an important resource in disaster prevention. Researchers conducted research surveys of 91 well owners and 328 welfare facilities affected by the 2016 Kumamoto Earthquake. The surveys clarified groundwater use following the earthquake and policy issues that could make the use of emergency wells more effective in the wake of future disasters. The surveys' findings provide useful data for city governments that have installed or are considering installing emergency wells.
Published Tonga volcano had highest plume ever recorded


Using images captured by satellites, researchers have confirmed that the January 2022 eruption of the Hunga Tonga-Hunga Ha'apai volcano produced the highest-ever recorded plume. The colossal eruption is also the first to have been directly observed to have broken through to the mesosphere layer of the atmosphere.
Published Volcanic activity and low ocean oxygen events linked to climate warming and rapid ice melt during last ice age, study finds


A chemical analysis of sediment cores from the North Pacific Ocean show a consistent pairing of volcanic ash and hypoxia, a low ocean oxygen interval spanning thousands of years, during times of rapid climate warming at the end of the last ice age, new research shows.
Published Violent supershear earthquakes are more common than previously thought


About 14% of magnitude 6.7 or greater strike-slip earthquakes since 2000 have been supershear. That's 50% more than previously thought. Supershear earthquakes occur when a fault ruptures faster than seismic shear waves can travel through rock. The events were thought to be rare because scientists had mostly looked for them on land. The findings suggest that disaster planning assessments should include whether a fault is able to produce supershear quakes, which are potentially more destructive than other types.