Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Geoscience: Geology
Published Planetary Commons: Fostering global cooperation to safeguard critical Earth system functions



Tipping elements of the Earth system should be considered global commons, researchers argue. Global commons cannot -- as they currently do -- only include the parts of the planet outside of national borders, like the high seas or Antarctica. They must also include all the environmental systems that regulate the functioning and state of the planet, namely all systems on Earth we all depend on, irrespective on where in the world we live. This calls for a new level of transnational cooperation, leading experts in legal, social and Earth system sciences say. To limit risks for human societies and secure critical Earth system functions they propose a new framework of planetary commons to guide governance of the planet.
Published Key factors in human-made earthquakes



Researchers report that the roughness of pre-existing faults and associated stress heterogeneity in geological reservoirs play a key role for causing human-made earthquakes, so-called runaway events. The study combines novel fluid injection experiments under acoustic monitoring performed in GFZ's geomechanical laboratory with numerical modelling results.
Published New map shows where damaging earthquakes are most likely to occur in US



Scientists recently revealed the latest National Seismic Hazard Model, showing that nearly 75% of the United States could experience a damaging earthquake, emphasizing seismic hazards span a significant part of the country.
Published Study uncovers potential origins of life in ancient hot springs



A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Meteorite analysis shows Earth's building blocks contained water



Analysis of iron meteorites from the earliest years of the solar system indicate that the planetary 'seeds' that ultimately formed Earth contained water.
Published Is natural spa water a fossil of water? Uncover the real ultra-deep water cycles



Researchers have made a groundbreaking discovery regarding the origins of non-meteoric water in natural spa waters located in central Japan. Based on numerical modeling, their results suggest that this water has been confined within the lithosphere for an extensive period of 1.5-5 million years. They identified three primary sources for this ancient water: the Philippine Sea Plate, the Pacific Plate, and ancient seafloor sediments, particularly in the Niigata and southwest Gunma regions.
Published Seismic and infrasonic signals used to characterize Nord Stream pipeline events



A new study provides further evidence that the Nord Stream seismic signals came from a complex source. The signals lasted longer than would be expected from a single explosive source, the researchers say, and were more like the signals detected from an underwater volcano or a pipeline venting gas.
Published From NYC to DC and beyond, cities on the East Coast are sinking



Major cities on the U.S. Atlantic coast are sinking, in some cases as much as 5 millimeters per year -- a decline at the ocean's edge that well outpaces global sea level rise, confirms new research. Particularly hard hit population centers such as New York City and Long Island, Baltimore, and Virginia Beach and Norfolk are seeing areas of rapid 'subsidence,' or sinking land, alongside more slowly sinking or relatively stable ground, increasing the risk to roadways, runways, building foundations, rail lines, and pipelines, according to a new study.
Published Mesopotamian bricks unveil the strength of Earth's ancient magnetic field



Ancient bricks inscribed with the names of Mesopotamian kings have yielded important insights into a mysterious anomaly in Earth's magnetic field 3,000 years ago, according to a new study.
Published Little bacterium may make big impact on rare-earth processing



A tiny, hard-working bacterium -- which weighs one-trillionth of a gram -- may soon have a large influence on processing rare earth elements in an eco-friendly way.
Published Exoplanets' climate -- it takes nothing to switch from habitable to hell



The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.
Published Global inventory of sound production brings us one step closer to understanding aquatic ecosystems



Our understanding of which aquatic species produce sounds just took a big step forward. Scientists have created an inventory of species confirmed or expected to produce sound underwater.
Published Positive tipping points must be triggered to solve climate crisis



Positive tipping points must be triggered if we are to avoid the severe consequences of damaging Earth system tipping points, researchers say.
Published Morocco earthquake had unusual deep slip, according to new modeling



In their rapid characterization of the magnitude 6.8 Al Haouz earthquake in Morocco, researchers suggest that the earthquake ruptured roughly 25 kilometers deep beneath the surface.
Published Drones capture new clues about how water shapes mountain ranges over time



Drones flying along miles of rivers in the steep, mountainous terrain of central Taiwan and mapping the rock properties have revealed new clues about how water helps shape mountains over geological time.
Published Was the earthquake induced or natural? New study tests frameworks to answer the question



Using questionnaires created to determine whether a particular earthquake is natural or induced by human activity, a panel of experts concluded that the November 2022 magnitude 5.2 Peace River earthquake sequence in Alberta, Canada was likely to be induced.
Published New geophysical technique enhances imaging of fluid-filled rocks finding connections with microearthquakes



Scientists have recently introduced a new method called ambient noise differential adjoint tomography, which allows researchers to visualise rocks with fluids better, leading to potential advancements in the discovery of water and oil resources, as well as applications in urban geologic hazard and early warning systems for tsunamis and the understanding of the water cycle.
Published Molecular fossils shed light on ancient life



Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. New research combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.
Published Geoscientists map changes in atmospheric carbon dioxide over past 66 million years



An international consortium of geoscientists has reconstructed atmosphereric levels of carbon dioxide going back 66 million years using proxies in the geoloogical record. Today's concenteration, 420 parts per million, is higher than it's ever been in 14 million years.
Published Recycling concrete using carbon can reduce emissions and waste



Amid the rubble of large-sale earthquake, war or other disaster -- and as ageing buildings and infrastructure are replaced -- mountains of concrete are often taken to landfill or pounded into rubble for roads. For a more sustainable approach, experts are developing a 'value add' for old broken concrete to 'upcycling' coarse aggregate to produce a strong, durable and workable concrete using a small amount of a secret ingredient -- graphene.