Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Geoscience: Geology
Published Ancient diamonds shine light on the evolution of Earth



Formed millions to billions of years ago, diamonds can shine light into the darkest and oldest parts of the Earth's mantle. The analysis of ancient, superdeep diamonds dug up from mines in Brazil and Western Africa, has exposed new processes of how continents evolved and moved during the early evolution of complex life on Earth. These diamonds that were formed between 650 and 450 million years ago on the base of the supercontinent Gondwana, were analysed by an international team of experts, and have shown how supercontinents such as Gondwana were formed, stabilised, and how they move around the planet.
Published Researchers test seafloor fiber optic cable as an earthquake early warning system



One of the biggest challenges for earthquake early warning systems (EEW) is the lack of seismic stations located offshore of heavily populated coastlines, where some of the world's most seismically active regions are located. In a new study, researchers show how unused telecommunications fiber optic cable can be transformed for offshore EEW.
Published Ice sheet surface melt is accelerating in Greenland and slowing in Antarctica



Surface ice in Greenland has been melting at an increasing rate in recent decades, while the trend in Antarctica has moved in the opposite direction, according to researchers.
Published Plate tectonic surprise: Geologist unexpectedly finds remnants of a lost mega-plate



Geologists have reconstructed a massive and previously unknown tectonic plate that was once one-quarter the size of the Pacific Ocean. The team had predicted its existence over 10 years ago based on fragments of old tectonic plates found deep in the Earth’s mantle. To the lead researchers surprise, she found that oceanic remnants on northern Borneo must have belonged to the long-suspected plate, which scientists have named Pontus. She has now reconstructed the entire plate in its full glory.
Published Climate change brings earlier arrival of intense hurricanes



New research has revealed that since the 1980s, Category 4 and 5 hurricanes (maximum wind speed greater than 131 miles per hour) have been arriving three to four days earlier with each passing decade of climate change.
Published AI-driven earthquake forecasting shows promise in trials



A new attempt to predict earthquakes has raised hopes that artificial intelligence could one day be used to limit earthquakes’ impact on lives and economies. The AI algorithm correctly predicted 70% of earthquakes a week before they happened during a seven-month trial in China. The system is limited because the AI needs an extensive database and years of seismic recordings to train itself on, but researchers said the effort is nonetheless a milestone for AI-driven earthquake forecasting. Researchers will soon begin testing the system at other locations.
Published Ancient carbon in rocks releases as much carbon dioxide as the world's volcanoes



New research has overturned the traditional view that natural rock weathering acts as a carbon sink that removes CO2 from the atmosphere. Instead, this can also act as a large CO2 source, rivaling that of volcanoes.
Published Volcanic ash effects on Earth systems



To bridge the knowledge gap between volcanologists and atmospheric scientists working on climate change and observing global systems, researchers have characterized volcanic ash samples from many explosive eruptions of a broad compositional range.
Published Discovery of massive undersea water reservoir could explain New Zealand's mysterious slow earthquakes



Researchers working to image New Zealand's Hikurangi earthquake fault have uncovered a sea's worth of water buried in the Earth's crust. The water was carried down by eroding volcanic rocks and is believed to be dampening the earthquake fault, allowing it to release most of the pent-up tectonic stress through harmless slow slip earthquakes.
Published Ancient plant wax reveals how global warming affects methane in Arctic lakes



In a new study, researchers examined the waxy coatings of leaves preserved as organic molecules within sediment from the early-to-middle Holocene, a period of intense warming that occurred due to slow changes in Earth's orbit 11,700 to 4,200 years ago. They found that warming potentially could lead to a previously under-appreciated flux in methane emissions from lakes.
Published Tree rings reveal a new kind of earthquake threat to the Pacific Northwest, US



Tree rings reveal a new kind of earthquake threat to the Pacific Northwest. These findings could have implications for seismic preparedness measures in the region.
Published Exploring the effect of water on seismic wave attenuation in the upper mantle



The mechanism facilitating the smooth movement of the oceanic lithosphere over the underlying asthenosphere (upper mantle) remains poorly understood. Recently, researchers from Japan investigated the effect of water on the seismic properties of olivine rocks, finding that water retention in the asthenosphere can induce sharp drops in shear wave velocity. This also explained other seismic changes observed at the lithosphere-asthenosphere boundary. These findings provide invaluable insights into the diverse seismic activities on Earth.
Published New research reveals extreme heat likely to wipe out humans and mammals in the distant future



A new study shows unprecedented heat is likely to lead to the next mass extinction, akin to when the dinosaurs died out, eliminating nearly all mammals in some 250 million years time.
Published A newly identified virus emerges from the deep



Marine virologists analyzed sediment from the Mariana Trench, the deepest place on Earth, and identified a new bacteriophage.
Published Crucial third clue to finding new diamond deposits


Researchers studying diamond-rich rocks from Western Australia's Argyle volcano have identified the missing third key ingredient needed to bring valuable pink diamonds to the Earth's surface where they can be mined, which could greatly help in the global hunt for new deposits.
Published Earth's stability and ability to support civilization at risk: Six of nine planetary boundaries exceeded



A new study updates the planetary boundary framework and shows human activities are increasingly impacting the planet and, thereby, increasing the risk of triggering dramatic changes in overall Earth conditions.
Published Largest historic fire death toll belongs to aftermath of 1923 Japan Earthquake



Fires that raged in the days following the 1 September 1923 magnitude 7.9 Kant earthquake killed roughly 90% of the 105,000 people who perished in and around Tokyo, making it one of the deadliest natural disasters in history -- comparable to the number of people killed in the World War II atomic bombing of Hiroshima. The story of the conflagration, not well-known outside of Japan, holds important lessons for earthquake scientists, emergency response teams and city planners, according to a new article.
Published Scientific ocean drilling discovers dynamic carbon cycling in the ultra-deep-water Japan Trench



Hadal trenches, with their deepest locations situated in the so-called hadal zone, the deepest parts of the ocean in water depth >6km, are the least-explored environment on Earth, linking the Earth's surface and its deeper interior. An international team conducting deep-subsurface sampling in a hadal trench at high spatial resolution has revealed exciting insights on the carbon cycling in the trench sediment.
Published Bursting air bubbles may play a key role in how glacier ice melts



New research has uncovered a possible clue as to why glaciers that terminate at the sea are retreating at unprecedented rates: the bursting of tiny, pressurized bubbles in underwater ice.
Published Two out of three volcanoes are little-known. How to predict their eruptions?



What is the risk of a volcano erupting? To answer this question, scientists need information about its underlying internal structure. However, gathering this data can take several years of fieldwork, analyses and monitoring, which explains why only 30% of active volcanoes are currently well documented. A team has developed a method for rapidly obtaining valuable information. It is based on three parameters: the height of the volcano, the thickness of the layer of rock separating the volcano's reservoir from the surface, and the average chemical composition of the magma.