Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Geoscience: Landslides
Published Researchers studying ocean transform faults, describe a previously unknown part of the geological carbon cycle



This study reports widespread mineral carbonation of mantle rocks in an oceanic transform fueled by magmatic degassing of CO2. The findings describe a previously unknown part of the geological carbon cycle in transform faults that represent one of the three principal plate boundaries on Earth. The confluence of tectonically exhumed mantle rocks and CO2-rich alkaline basalt formed through limited extents of melting characteristic of the St. Paul's transform faults may be a pervasive feature at oceanic transform faults in general. Because transform faults have not been accounted for in previous estimates of global geological CO2 fluxes, the mass transfer of magmatic CO2 to the altered oceanic mantle and seawater may be larger than previously thought.
Published Ice cores provide first documentation of rapid Antarctic ice loss in the past



Researchers have uncovered the first direct evidence that the West Antarctic Ice Sheet shrunk suddenly and dramatically at the end of the Last Ice Age, around eight thousand years ago. The evidence, contained within an ice core, shows that in one location the ice sheet thinned by 450 meters -- that's more than the height of the Empire State Building -- in just under 200 years.
Published Ancient rocks improve understanding of tectonic activity between earthquakes



Rocks once buried deep in ancient subduction zones -- where tectonic plates collide -- could help scientists make better predictions of how these zones behave during the years between major earthquakes, according to a research team.
Published What turned Earth into a giant snowball 700 million years ago? Scientists now have an answer



Inspired during field work in South Australia's Flinders Ranges, geoscientists have proposed that all-time low volcanic carbon dioxide emissions triggered a 57-million-year-long global 'Sturtian' ice age.
Published A new origin story for deadly Seattle fault



The Seattle fault zone is a network of shallow faults slicing through the lowlands of Puget Sound, threatening to create damaging earthquakes for the more than four million people who live there. A new origin story, proposed in a new study, could explain the fault system's earliest history and help scientists improve hazard modeling for the densely populated region.
Published Study challenges the classical view of the origin of the Antarctic Circumpolar Current and warns of its vulnerability



The Circumpolar Current works as a regulator of the planet's climate. Its origins were thought to have caused the formation of the permanent ice in Antarctica about 34 million years ago. Now, a study has cast doubt on this theory, and has changed the understanding of how the ice sheet in Antarctic developed in the past, and what this could mean in the future as the planet's climate changes.
Published Source rocks of the first real continents



Geoscientists have uncovered a missing link in the enigmatic story of how the continents developed- - a revised origin story that doesn't require the start of plate tectonics or any external factor to explain their formation. Instead, the findings rely solely on internal geological forces that occurred within oceanic plateaus that formed during the first few hundred million years of Earth's history.
Published Unexpected biodiversity on the ocean floor



Hydrothermal vents and manganese nodule fields in the deep oceans contain more biodiversity than expected.
Published Records of cometary dust hitting the asteroid Ryugu



The Hayabusa2 mission that collected samples from the asteroid Ryugu has provided a treasure trove of insights into our solar system. After analyzing samples further, a team of researchers have unearthed evidence that cometary organic matter was transported from space to the near-Earth region.
Published Planetary Commons: Fostering global cooperation to safeguard critical Earth system functions



Tipping elements of the Earth system should be considered global commons, researchers argue. Global commons cannot -- as they currently do -- only include the parts of the planet outside of national borders, like the high seas or Antarctica. They must also include all the environmental systems that regulate the functioning and state of the planet, namely all systems on Earth we all depend on, irrespective on where in the world we live. This calls for a new level of transnational cooperation, leading experts in legal, social and Earth system sciences say. To limit risks for human societies and secure critical Earth system functions they propose a new framework of planetary commons to guide governance of the planet.
Published Key factors in human-made earthquakes



Researchers report that the roughness of pre-existing faults and associated stress heterogeneity in geological reservoirs play a key role for causing human-made earthquakes, so-called runaway events. The study combines novel fluid injection experiments under acoustic monitoring performed in GFZ's geomechanical laboratory with numerical modelling results.
Published Study uncovers potential origins of life in ancient hot springs



A research team investigated how the emergence of the first living systems from inert geological materials happened on the Earth, more than 3.5 billion years ago. Scientists found that by mixing hydrogen, bicarbonate, and iron-rich magnetite under conditions mimicking relatively mild hydrothermal vent results in the formation of a spectrum of organic molecules, most notably including fatty acids stretching up to 18 carbon atoms in length.
Published Meteorite analysis shows Earth's building blocks contained water



Analysis of iron meteorites from the earliest years of the solar system indicate that the planetary 'seeds' that ultimately formed Earth contained water.
Published From NYC to DC and beyond, cities on the East Coast are sinking



Major cities on the U.S. Atlantic coast are sinking, in some cases as much as 5 millimeters per year -- a decline at the ocean's edge that well outpaces global sea level rise, confirms new research. Particularly hard hit population centers such as New York City and Long Island, Baltimore, and Virginia Beach and Norfolk are seeing areas of rapid 'subsidence,' or sinking land, alongside more slowly sinking or relatively stable ground, increasing the risk to roadways, runways, building foundations, rail lines, and pipelines, according to a new study.
Published Mesopotamian bricks unveil the strength of Earth's ancient magnetic field



Ancient bricks inscribed with the names of Mesopotamian kings have yielded important insights into a mysterious anomaly in Earth's magnetic field 3,000 years ago, according to a new study.
Published Little bacterium may make big impact on rare-earth processing



A tiny, hard-working bacterium -- which weighs one-trillionth of a gram -- may soon have a large influence on processing rare earth elements in an eco-friendly way.
Published Exoplanets' climate -- it takes nothing to switch from habitable to hell



The Earth is a wonderful blue and green dot covered with oceans and life, while Venus is a yellowish sterile sphere that is not only inhospitable but also sterile. However, the difference between the two bears to only a few degrees in temperature. A team of astronomers has achieved a world's first by managing to simulate the entirety of the runaway greenhouse process which can transform the climate of a planet from idyllic and perfect for life, to a place more than harsh and hostile. The scientists have also demonstrated that from initial stages of the process, the atmospheric structure and cloud coverage undergo significant changes, leading to an almost-unstoppable and very complicated to reverse runaway greenhouse effect. On Earth, a global average temperature rise of just a few tens of degrees, subsequent to a slight rise of the Sun's luminosity, would be sufficient to initiate this phenomenon and to make our planet inhabitable.
Published Global inventory of sound production brings us one step closer to understanding aquatic ecosystems



Our understanding of which aquatic species produce sounds just took a big step forward. Scientists have created an inventory of species confirmed or expected to produce sound underwater.
Published Positive tipping points must be triggered to solve climate crisis



Positive tipping points must be triggered if we are to avoid the severe consequences of damaging Earth system tipping points, researchers say.
Published Drones capture new clues about how water shapes mountain ranges over time



Drones flying along miles of rivers in the steep, mountainous terrain of central Taiwan and mapping the rock properties have revealed new clues about how water helps shape mountains over geological time.