Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Space: Astronomy
Published Frozen? Let it melt with efficient new de-icer friendly to the environment



A research team has found a de-icing mixture with high effectiveness and low environmental impact after using machine learning to analyze ice melting mechanisms of aqueous solutions of 21 salts and 16 organic solvents.
Published Scientists 'read' the messages in chemical clues left by coral reef inhabitants



What species live in this coral reef, and are they healthy? Chemical clues emitted by marine organisms might hold that information. But in underwater environments, invisible compounds create a complex 'soup' that is hard for scientists to decipher. Now, researchers have demonstrated a way to extract and identify these indicator compounds in seawater. They found metabolites previously undetected on reefs, including three that may represent different reef organisms.
Published Crystal engineering modifies 2D metal halide perovskites into 1D nanowires



Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.
Published Researchers upend theory about the formation of the Milky Way Galaxy



Research reveals a shocking discovery about the history of our universe: the Milky Way Galaxy's last major collision occurred billions of years later than previously thought.
Published Exotic black holes could be a byproduct of dark matter



In the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge, MIT physicists propose. The gravitational pull from these tiny, invisible objects could potentially explain all the dark matter that we can't see today.
Published Scientists detect slowest-spinning radio emitting neutron star ever recorded



Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate -- slower than any of the more than 3,000 radio emitting neutron stars measured to date.
Published Uptake of tire wear additives by vegetables grown for human consumption



Car tires contain hundreds of chemical additives that can leach out of them. This is how they end up in crops and subsequently in the food chain. Researchers have now detected these chemical residues in leafy vegetables for the first time. Although the concentrations were low, the evidence was clear, a finding that is also known for drug residues in plant-based foods.
Published A cracking discovery -- eggshell waste can recover rare earth elements needed for green energy



A collaborative team of researchers has made a cracking discovery with the potential to make a significant impact in the sustainable recovery of rare earth elements (REEs), which are in increasing demand for use in green energy technologies. The team found that humble eggshell waste could recover REES from water, offering a new, environmentally friendly method for their extraction.
Published Electrified charcoal 'sponge' can soak up CO2 directly from the air



Researchers have developed a low-cost, energy-efficient method for making materials that can capture carbon dioxide directly from the air. Researchers used a method similar to charging a battery to instead charge activated charcoal, which is often used in household water filters.
Published 'Weird' new planet retained atmosphere despite nearby star's relentless radiation



A rare exoplanet that should have been stripped down to bare rock by its nearby host star's intense radiation somehow grew a puffy atmosphere instead -- the latest in a string of discoveries forcing scientists to rethink theories about how planets age and die in extreme environments. Nicknamed 'Phoenix' for its ability to survive its red giant star's radiant energy discovered planet illustrates the vast diversity of solar systems and the complexity of planetary evolution -- especially at the end of stars' lives.
Published Accelerating the R&D of wearable tech: Combining collaborative robotics, AI



Engineers have developed a model that combines machine learning and collaborative robotics to accelerate the design of aerogel materials used in wearable heating applications.
Published Flow research on the outskirts of space



For years, various models have been developed to describe an important class of mixing effects that occur, for example, in the flow in a chemical reactor. Experimental validation, however, has lagged far behind due to the superimposition of gravity effects. Scientists have now closed this gap with experiments conducted under weightlessness.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Shining a light on molecules: L-shaped metamaterials can control light direction



Polarized light waves spin clockwise or counterclockwise as they travel, with one direction behaving differently than the other as it interacts with molecules. This directionality, called chirality or handedness, could provide a way to identify and sort specific molecules for use in biomedicine applications, but researchers have had limited control over the direction of the waves -- until now.
Published Researchers call for strengthening sustainability regulations in laws governing space exploration



Researchers call for strengthening existing planetary protection policies beyond the space surrounding Earth to include requirements for preserving the Lunar and Martian environments.
Published Altered carbon points toward sustainable manufacturing



Researchers develop a vastly more productive way to convert carbon dioxide into useful materials and compounds.
Published Transition-metal-free zeolite catalyst for direct conversion of methane to methanol



Direct oxidation of methane to methanol is dominated by transition- or noble-metal-based catalysts, thus making the reaction quite expensive. To make the process efficient and cost-effective, researchers developed a transition-metal-free aluminosilicate ferrierite zeolite catalyst that can produce methanol by using methane and nitrous oxide as starting materials. The new catalyst ensures excellent methanol production efficiency, one of the highest recorded rates in the literature thus far.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Fungus breaks down ocean plastic



A fungus living in the sea can break down the plastic polyethylene, provided it has first been exposed to UV radiation from sunlight. Researchers expect that many more plastic degrading fungi are living in deeper parts of the ocean.
Published Martian meteorites deliver a trove of information on Red Planet's structure



Mars has a distinct structure in its mantle and crust with discernible reservoirs, and this is known thanks to meteorites that scientists have analyzed. These results are important for understanding not only how Mars formed and evolved, but also for providing precise data that can inform recent NASA missions like Insight and Perseverance and the Mars Sample Return.