Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Space: Cosmology
Published Transition-metal-free zeolite catalyst for direct conversion of methane to methanol



Direct oxidation of methane to methanol is dominated by transition- or noble-metal-based catalysts, thus making the reaction quite expensive. To make the process efficient and cost-effective, researchers developed a transition-metal-free aluminosilicate ferrierite zeolite catalyst that can produce methanol by using methane and nitrous oxide as starting materials. The new catalyst ensures excellent methanol production efficiency, one of the highest recorded rates in the literature thus far.
Published Scientists develop 'x-ray vision' technique to see inside crystals



A team of researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique -- which they aptly named 'Crystal Clear' -- combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.
Published Fungus breaks down ocean plastic



A fungus living in the sea can break down the plastic polyethylene, provided it has first been exposed to UV radiation from sunlight. Researchers expect that many more plastic degrading fungi are living in deeper parts of the ocean.
Published Ancient medicine blends with modern-day research in new tissue regeneration method



For centuries, civilizations have used naturally occurring, inorganic materials for their perceived healing properties. Egyptians thought green copper ore helped eye inflammation, the Chinese used cinnabar for heartburn, and Native Americans used clay to reduce soreness and inflammation. Flash forward to today, and researchers are still discovering ways that inorganic materials can be used for healing. A new article explains that cellular pathways for bone and cartilage formation can be activated in stem cells using inorganic ions. Another recent article explores the usage of mineral-based nanomaterials, specifically 2D nanosilicates, to aid musculoskeletal regeneration.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published Medium and mighty: Intermediate-mass black holes can survive in globular clusters



New research demonstrated a possible formation mechanism of intermediate-mass black holes in globular clusters, star clusters that could contain tens of thousands or even millions of tightly packed stars. The first ever star-by-star massive cluster-formation simulations revealed that sufficiently dense molecular clouds, the 'birthing nests' of star clusters, can give birth to very massive stars that evolve into intermediate-mass black holes.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published NASA's James Webb Space Telescope finds most distant known galaxy



Over the last two years, scientists have used NASA's James Webb Space Telescope to explore what astronomers refer to as Cosmic Dawn -- the period in the first few hundred million years after the big bang where the first galaxies were born.
Published The case of the missing black holes



Researchers have applied the well-understood and highly verified quantum field theory, usually applied to the study of the very small, to a new target, the early universe. Their exploration led to the conclusion that there ought to be far fewer miniature black holes than most models suggest, though observations to confirm this should soon be possible. The specific kind of black hole in question could be a contender for dark matter.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published Biobased building materials less sustainable than concrete in South Africa, experts find



Scientists have discovered that mycelium composites, biobased materials made from fungi and agricultural residues, can have a greater environmental impact than conventional fossil-fuel-based materials due to the high amount of electricity involved in their production.
Published Polymeric films protect anodes from sulfide solid electrolytes



Researchers unveil the interaction between polymeric materials and sulfide solid electrolytes.
Published 'The magic of making electricity from metals and air' The vexing carbonate has achieved it!



Team develops a high-energy, high-efficiency all-solid-state Na-air battery platform.
Published Charge your laptop in a minute or your EV in 10? Supercapacitors can help



Imagine if your dead laptop or phone could charge in a minute or if an electric car could be fully powered in 10 minutes. New research could lead to such advances.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Observing mammalian cells with superfast soft X-rays



Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.
Published Birth of universe's earliest galaxies observed for first time



Researchers have now seen the formation of three of the earliest galaxies in the universe, more than 13 billion years ago. The sensational discovery contributes important knowledge about the universe.
Published Charting a pathway to next-gen biofuels



From soil to sequestration, researchers have modeled what a supply chain for second-generation biofuels might look like in the midwestern United States.
Published Iron could be key to less expensive, greener lithium-ion batteries, research finds



Chemistry researchers are hoping to spark a green battery revolution by showing that iron instead of cobalt and nickel can be used as a cathode material in lithium-ion batteries.
Published New milestone for lithium metal batteries



Scientists develop a porous structures for lithium metal batteries.