Showing 20 articles starting at article 1021
< Previous 20 articles Next 20 articles >
Categories: Anthropology: General, Chemistry: General
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Grambank shows the diversity of the world's languages



What shapes the structure of languages? In a new study, an international team of researchers reports that grammatical structure is highly flexible across languages, shaped by common ancestry, constraints on cognition and usage, and language contact. The study used the Grambank database, which contains data on grammatical structures in over 2400 languages.
Published Nanoparticles provoke immune response against tumors but avoid side effects



Researchers find that when immunostimulatory drugs called imidazoquinolines are delivered using specialized bottlebrush nanoparticles, the drugs provoke the immune system to attack tumors while eliminating the side effects that occur when the drugs are given on their own.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Stronger paper bags, reused repeatedly then recycled for biofuel could be future



As the world searches for ways to reduce the use of plastics such as single-use plastic bags, a novel study demonstrates a process to make paper bags stronger -- especially when they get wet -- to make them a more viable alternative.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Swimming secrets of prehistoric reptiles unlocked by new study



The diverse swimming techniques of the ancient reptiles that ruled the Mesozoic seas have been revealed.
Published Researchers develop carbon-negative concrete



A viable formula for a carbon-negative, environmentally friendly concrete that is nearly as strong as regular concrete has been developed. In a proof-of-concept work, the researchers infused regular cement with environmentally friendly biochar, a type of charcoal made from organic waste, that had been strengthened beforehand with concrete wastewater. The biochar was able to suck up to 23% of its weight in carbon dioxide from the air while still reaching a strength comparable to ordinary cement. The research could significantly reduce carbon emissions of the concrete industry, which is one of the most energy- and carbon-intensive of all manufacturing industries.
Published Recovering rare earth elements in environmental water



A research group has succeeded in selectively recovering trace rare earth elements in synthetic seawater and environmental water, such as hot spring water, using baker's yeast with a phosphate group added. The phosphorylated yeast is expected to be utilized as a material for recovering useful metals and removing toxic metals, thereby contributing to the realization of a metal resource-circulating society.
Published Ancient DNA reveals the multiethnic structure of Mongolia's first nomadic empire



The Xiongnu, contemporaries of Rome and Egypt, built their nomadic empire on the Mongolian steppe 2,000 years ago, emerging as Imperial China's greatest rival and even inspiring the construction of China's Great Wall. In a new study, researchers find that the Xiongnu were a multiethnic empire, with high genetic diversity found across the empire and even within individual extended elite families. At the fringes of the empire, women held the highest positions of power, and the highest genetic diversity was found among low-status male servants, giving clues to the process of empire building that gave rise to Asia's first nomadic imperial power.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.
Published Gentle method allows for eco-friendly recycling of solar cells



By using a new method, precious metals can be efficiently recovered from thin-film solar cells. The method is also more environmentally friendly than previous methods of recycling and paves the way for more flexible and highly efficient solar cells.
Published Chemists redesign biological PHAs, 'dream' biodegradable plastics



They've been called 'dream' plastics: polyhydroxyalkanoates, or PHAs. Already the basis of a fledgling industry, they're a class of polymers naturally created by living microorganisms, or synthetically produced from biorenewable feedstocks. They're biodegradable in the ambient environment, including oceans and soil.
Published Engineers devise technology to prevent fouling in photobioreactors for CO2 capture



A new, inexpensive technology can limit the buildup of algae on the walls of photobioreactors that can help convert carbon dioxide into useful products. Reducing this fouling avoids costly cleanouts and allows more photosynthesis to happen within tanks.
Published Apes may have evolved upright stature for leaves, not fruit, in open woodland habitats



Anthropologists have long thought that our ape ancestors evolved an upright torso in order to pick fruit in forests, but new research from the University of Michigan suggests a life in open woodlands and a diet that included leaves drove apes' upright stature.
Published Oldest bat skeletons ever found described from Wyoming fossils



Scientists have described a new species of bat based on the oldest bat skeletons ever recovered. The study on the extinct bat, which lived in Wyoming about 52 million years ago, supports the idea that bats diversified rapidly on multiple continents during this time.
Published The hidden culprit behind nitrogen dioxide emissions



A research team assesses neighborhood-scale NO2 exposure using a European satellite. High-rise apartment complexes are a significant source of emissions that should be considered in the development of clean air policies.
Published Dairy foods helped ancient Tibetans thrive in one of Earth's most inhospitable environments



The question of how prehistoric populations obtained sustainable food in the barren heights of the Tibetan Plateau has long attracted academic and popular interest. A new study highlights the critical role of dairy pastoralism in opening the plateau up to widespread, long-term human habitation.