Showing 20 articles starting at article 1041
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Offbeat: Space
Published Reinventing cosmology: New research puts age of universe at 26.7 -- not 13.7 -- billion years



Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called 'impossible early galaxy problem.'
Published Quasar 'clocks' show Universe was five times slower soon after the Big Bang



Quasars are the supermassive black holes at the centres of early galaxies. Scientists have unlocked their secrets to use them as 'clocks' to measure time near the beginning of the universe.
Published First 'ghost particle' image of Milky Way



Scientists have revealed a uniquely different image of our galaxy by determining the galactic origin of thousands of neutrinos -- invisible 'ghost particles' which exist in great quantities but normally pass straight through Earth undetected. The neutrino-based image of the Milky Way is the first of its kind: a galactic portrait made with particles of matter rather than electromagnetic energy.
Published Gullies on Mars could have been formed by recent periods of liquid meltwater, study suggests



A study offers new insights into how water from melting ice could have played a recent role in the formation of ravine-like channels that cut down the sides of impact craters on Mars.
Published Earliest strands of the cosmic web



Galaxies are not scattered randomly across the universe. They gather together not only into clusters, but into vast interconnected filamentary structures with gigantic barren voids in between. This 'cosmic web' started out tenuous and became more distinct over time as gravity drew matter together.
Published Unveiling the origins of merging black holes in galaxies like our own



Black holes, some of the most captivating entities in the cosmos, possess an immense gravitational pull so strong that not even light can escape. The groundbreaking detection of gravitational waves in 2015, caused by the coalescence of two black holes, opened a new window into the universe. Since then, dozens of such observations have sparked the quest among astrophysicists to understand their astrophysical origins. Thanks to the POSYDON code's recent major advancements in simulating binary-star populations, a team of scientists predicted the existence of merging massive, 30 solar mass black hole binaries in Milky Way-like galaxies, challenging previous theories.
Published Gravitational waves from colossal black holes found using 'cosmic clocks'



You can't see or feel it, but everything around you -- including your own body -- is slowly shrinking and expanding. It's the weird, spacetime-warping effect of gravitational waves passing through our galaxy. New results are the first evidence of the gravitational wave background -- a sort of soup of spacetime distortions pervading the entire universe and long predicted to exist by scientists.
Published Life after death: Astronomers find a planet that shouldn't exist



The star would have inflated up to 1.5 times the planet's orbital distance -- engulfing the planet in the process -- before shrinking to its current size at only one-tenth of that distance.
Published Starlight and the first black holes: researchers detect the host galaxies of quasars in the early universe



For the first time, the James Webb Space Telescope has revealed starlight from two massive galaxies hosting actively growing black holes -- quasars -- seen less than a billion years after the Big Bang.
Published Magnetic bacteria point the way



Magnetotactic bacteria, which can align with the Earth's magnetic field, have been discovered in a new location. Previously observed on land and in shallow water, analysis of a hydrothermal vent has proven that they can also survive deep under the ocean. The bacteria were able to exist in an environment that was not ideal for their typical needs. Magnetotactic bacteria are of interest not only for the role they play in Earth's ecosystem, but also in the search for extraterrestrial life. Evidence of their existence can remain in rocks for billions of years. Their magnetic inclinations can also provide a record of how magnetic poles have shifted over time. This new discovery brings hope to researchers that the magnetic bacteria might be found in yet more unexpected locations, on Earth and perhaps even on Mars or beyond.
Published Don't wait, desalinate: A new approach to water purification



A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.
Published First detection of crucial carbon molecule



Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.
Published Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts



CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.
Published Surprise! Weaker bonds can make polymers stronger



Chemists discovered a new way to make polymers stronger: introduce a few weaker bonds into the material. Working with polyacrylate elastomers, they could increase the materials' resistance to tearing up to tenfold by using a weaker type of crosslinker to join some of the polymer building blocks.
Published Einstein and Euler put to the test at the edge of the Universe



The cosmos is a unique laboratory for testing the laws of physics, in particular those of Euler and Einstein. Euler described the movements of celestial objects, while Einstein described the way in which celestial objects distort the Universe. Since the discovery of dark matter and the acceleration of the Universe's expansion, the validity of their equations has been put to the test: are they capable of explaining these mysterious phenomena? A team has developed the first method to find out. It considers a never-before-used measure: time distortion.
Published Molecular filament shielded young solar system from supernova



Isotope ratios found in meteorites suggest that a supernova exploded nearby while the Sun and Solar System were still forming. But the blast wave from a supernova that close could have potentially destroyed the nascent Solar System. New calculations shows that a filament of molecular gas, which is the birth cocoon of the Solar System, aided the capture of the isotopes found in the meteorites, while acting as a buffer protecting the young Solar System from the nearby supernova blast.
Published Making the most of minuscule metal mandalas



To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called 'POMs', researchers have created a speciation atlas. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.
Published Never-before-seen way to annihilate a star



Astronomers studying a powerful gamma-ray burst, may have detected a never-before-seen way to destroy a star. Unlike most GRBs, which are caused by exploding massive stars or the chance mergers of neutron stars, astronomers have concluded that this GRB came instead from the collision of stars or stellar remnants in the jam-packed environment surrounding a supermassive black hole at the core of an ancient galaxy.
Published Rain gardens could save salmon from toxic tire chemicals



Specially designed gardens could reduce the amount of a toxic chemical associated with tires entering our waterways by more than 90 per cent, new research shows.
Published Biodegradable gel shows promise for cartilage regeneration



A gel that combines both stiffness and toughness is a step forward in the bid to create biodegradable implants for joint injuries, according to new research. Mimicking articular cartilage, found in our knee and hip joints, is challenging. This cartilage is key to smooth joint movement, and damage to it can cause pain, reduce function, and lead to arthritis. One potential solution is to implant artificial scaffolds made of proteins that help the cartilage regenerate itself as the scaffold biodegrades. How well the cartilage regenerates is linked to how well a scaffold can mimic the biological properties of cartilage, and to date, researchers have struggled to combine the seemingly incompatible properties of stiffness and toughness. Now, new research outlines a method to marry these properties in a biodegradable gel.