Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Offbeat: Computers and Math
Published AI writing, illustration emits hundreds of times less carbon than humans, study finds



A group of scholars calculated the amount of energy used by AI tools for the tasks of writing and illustrating and compared it to the average amount of energy humans use for the same processes. Their results showed artificial intelligence results in hundreds of times less carbon emissions than humans. This does not mean, however, that AI can or should replace humans in those tasks, simply that its energy usage is less. The better approach is a partnership between humans and AI, the authors write.
Published Chemistry researchers modify solar technology to produce a less harmful greenhouse gas



Researchers are using semiconductors to harvest and convert the sun's energy into high-energy compounds that have the potential to produce environmentally-friendly fuels.
Published Engineers 'symphonize' cleaner ammonia production



Among the many chemicals we use every day, ammonia is one of the worst for the atmosphere. The nitrogen-based chemical used in fertilizer, dyes, explosives and many other products ranks second only to cement in terms of carbon emissions, due to the high temperatures and energy needed to manufacture it. But by improving on a well-known electrochemical reaction and orchestrating a 'symphony' of lithium, nitrogen and hydrogen atoms, engineers have developed a new ammonia production process that meets several green targets.
Published Study uses artificial intelligence to show how personality influences the expression of our genes



An international study using artificial intelligence has shown that our personalities alter the expression of our genes. The findings shed new light on the long-standing mystery of how the mind and body interact.
Published Physics-based predictive tool will speed up battery and superconductor research



Researchers have developed physics-based guidelines that will benefit host-guest intercalated materials research. By using only two guest properties and eight host-derived descriptors, they correctly predicted the intercalation energies and stabilities of many host-guest systems. This work is an important advance that will minimize the extensive trial-and-error laboratory work that otherwise slows down research and development in battery and superconductor technologies.
Published New approach to monitoring freshwater quality can identify sources of pollution, and predict their effects



Analysing the diversity of organic compounds dissolved in freshwater provides a reliable measure of ecosystem health, say scientists.
Published Study unlocks the power of visible light for sustainable chemistry



A breakthrough in sustainable molecular transformations has been announced. Chemists have developed an important way to harness the power of visible light to drive chemical processes with greater efficiencies, offering a greener alternative to traditional methods.
Published Revolutionary biomimetic olfactory chips to enable advanced gas sensing and odor detection



A research team has addressed the long-standing challenge of creating artificial olfactory sensors with arrays of diverse high-performance gas sensors. Their newly developed biomimetic olfactory chips (BOC) are able to integrate nanotube sensor arrays on nanoporous substrates with up to 10,000 individually addressable gas sensors per chip, a configuration that is similar to how olfaction works for humans and other animals.
Published Robot, can you say 'cheese'?



What would you do if you walked up to a robot with a human-like head and it smiled at you first? You'd likely smile back and perhaps feel the two of you were genuinely interacting. But how does a robot know how to do this? Or a better question, how does it know to get you to smile back?
Published More efficient TVs, screens and lighting



New multidisciplinary research could lead to more efficient televisions, computer screens and lighting.
Published A solar cell you can bend and soak in water



Researchers have developed an organic photovoltaic film that is both waterproof and flexible, allowing a solar cell to be put onto clothes and still function correctly after being rained on or even washed.
Published Micro-Lisa! Making a mark with novel nano-scale laser writing



High-power lasers are often used to modify polymer surfaces to make high-tech biomedical products, electronics and data storage components. Now researchers have discovered a light-responsive, inexpensive sulfur-derived polymer is receptive to low power, visible light lasers -- promising a more affordable and safer production method in nanotech, chemical science and patterning surfaces in biological applications.
Published Research lights up process for turning CO2 into sustainable fuel



Researchers have successfully transformed CO2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.
Published Pairing crypto mining with green hydrogen offers clean energy boost



Pairing cryptocurrency mining -- notable for its outsize consumption of carbon-based fuel -- with green hydrogen could provide the foundation for wider deployment of renewable energy, such as solar and wind power, according to a new study.
Published Pushing back the limits of optical imaging by processing trillions of frames per second



Pushing for a higher speed isn't just for athletes. Researchers, too, can achieve such feats with their discoveries. A new device called SCARF (for swept-coded aperture real-time femtophotography) can capture transient absorption in a semiconductor and ultrafast demagnetization of a metal alloy. This new method will help push forward the frontiers of knowledge in a wide range of fields, including modern physics, biology, chemistry, materials science, and engineering.
Published Scientists deliver quantum algorithm to develop new materials and chemistry



Scientists published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent article, expected to become a powerful tool to investigate the physical properties in electronic systems.
Published The world is one step closer to secure quantum communication on a global scale



Researchers have brought together two Nobel prize-winning research concepts to advance the field of quantum communication. Scientists can now efficiently produce nearly perfect entangled photon pairs from quantum dot sources.
Published A self-cleaning wall paint



Beautiful white wall paint does not stay beautiful and white forever. Often, various substances from the air accumulate on its surface. This can be a desired effect because it makes the air cleaner for a while -- but over time, the color changes and needs to be renewed. Now, special titanium oxide nanoparticles have been developed that can be added to ordinary, commercially available wall paint to establish self-cleaning power: The nanoparticles are photocatalytically active, they can use sunlight not only to bind substances from the air, but also to decompose them afterwards.
Published New all-liquid iron flow battery for grid energy storage



A new iron-based aqueous flow battery shows promise for grid energy storage applications.
Published A reliable and efficient computational method for finding transition states in chemical reactions



A computational method for finding transition states in chemical reactions, greatly reducing computational costs with high reliability, has been devised. Compared to the most widely used existing method, the present method reduces the total computational cost by approximately 50 to 70%. The development, available on GitHub, is poised to accelerate advancements in material science, making the exploration of chemical reactions more accessible and efficient.