Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Volcanoes, Paleontology: Climate
Published Limitations of asteroid crater lakes as climate archives



In southern Germany just north of the Danube, there lies a large circular depression between the hilly surroundings: the Nördlinger Ries. Almost 15 million years ago, an asteroid struck this spot. Today, the impact crater is one of the most useful analogues for asteroid craters on early Mars. Studying the deposits of the former lake that formed in the crater is particularly informative. These deposits have been of great interest ever since NASA began exploring Martian craters for signs of water and life on Mars.
Published More than a meteorite: New clues about the demise of dinosaurs



What wiped out the dinosaurs? A meteorite plummeting to Earth is only part of the story, a new study suggests. Climate change triggered by massive volcanic eruptions may have ultimately set the stage for the dinosaur extinction, challenging the traditional narrative that a meteorite alone delivered the final blow to the ancient giants.
Published Crocodile family tree mapped: New light shed on croc evolution



Around 250 million years ago, 700 species of reptiles closely related to the modern-day crocodile roamed the earth, now new research reveals how a complex interplay between climate change, species competition and habitat can help explain why just 23 species of crocodile survive today.
Published Aging societies more vulnerable to collapse



Societies and political structures, like the humans they serve, appear to become more fragile as they age, according to an analysis of hundreds of pre-modern societies. A new study, which holds implications for the modern world, provides the first quantitative support for the theory that the resilience of political states decreases over time.
Published Antarctica's ancient ice sheets foreshadow dynamic changes in Earth's future



Identifying how and why Antarctica's major ice sheets behaved the way they did in the early Miocene could help inform understanding of the sheets' behavior under a warming climate. Together, the ice sheets lock a volume of water equivalent to more than 50 meters of sea level rise and influence ocean currents that affect marine food webs and regional climates. Their fate has profound consequences for life nearly everywhere on Earth.
Published Decoding past climates through dripstones



A recent study demonstrates how dripstones can be crucial for reconstructing past climates. The new approach can provide a detailed picture of the climate around early human occupations in South Africa.
Published 600 years of tree rings reveal climate risks in California



The San Joaquin Valley in California has experienced vast variability in climate extremes, with droughts and floods that were more severe and lasted longer than what has been seen in the modern record, according to a new study of 600 years of tree rings from the valley.
Published Landscape dynamics determine the evolution of biodiversity on Earth



A landmark study into the geological timescale distribution of sediment and nutrients over 500 million years shows that species biodiversity on Earth is driven by landscape dynamics.
Published Deoxygenation levels similar to today's played a major role in marine extinctions during major past climate change event



Scientists have made a surprising discovery that sheds new light on the role that oceanic deoxygenation (anoxia) played in one of the most devastating extinction events in Earth's history. Their finding has implications for current day ecosystems -- and serves as a warning that marine environments are likely more fragile than apparent. New research, published today in leading international journal Nature Geosciences, suggests that oceanic anoxia played an important role in ecosystem disruption and extinctions in marine environments during the Triassic--Jurassic mass extinction, a major extinction event that occurred around 200 million years ago. Surprisingly however, the study shows that the global extent of euxinia (an extreme form of de-oxygenated conditions) was similar to the present day.
Published Massive 2022 eruption reduced ozone layer levels



The Hunga Tonga-Hunga Ha'apai volcano changed the chemistry and dynamics of the stratosphere in the year following the eruption, leading to unprecedented losses in the ozone layer of up to 7% over large areas of the Southern Hemisphere.
Published Deep dive on sea level rise: New modelling gives better predictions on Antarctic ice sheet melt



Using historical records from around Australia, an international team of researchers have put forward the most accurate prediction to date of past Antarctic ice sheet melt, providing a more realistic forecast of future sea level rise. The Antarctic ice sheet is the largest block of ice on earth, containing over 30 million cubic kilometers of water. Hence, its melting could have a devasting impact on future sea levels. To find out just how big that impact might be, the research team turned to the past.
Published Plants that survived dinosaur extinction pulled nitrogen from air



Ancient cycad lineages that survived the extinction of the dinosaurs may have done so by relying on symbiotic bacteria in their roots to fix atmospheric nitrogen. The finding came from an effort to understand ancient atmospheres, but became an insight into plant evolution instead.
Published How salt from the Caribbean affects our climate



Past cold periods such as the Little Ice Age were associated with reduced strength of North Atlantic currents and increased surface salinity in the Caribbean. This was accompanied by disturbances in the distribution of salt to the north leading to longer, stronger cooling phases in the northern hemisphere.
Published How a climate model can illustrate and explain ice-age climate variability



During the last ice age, the last glacial maximum about 20,000 years ago, the climate in the North Atlantic underwent much greater multi-centennial variability than it does in the present warm period. This is supported by evidence found in ice and seafloor cores. Researchers have now shown, based on a climate model, that internal mechanisms such as temperature and salinity distribution in the ocean are driving this multi-centennial variability.
Published Study links changes in global water cycle to higher temperatures



A new study takes an important step toward reconstructing a global history of water over the past 2,000 years. Using geologic and biologic evidence preserved in natural archives -- including 759 different paleoclimate records from globally distributed corals, trees, ice, cave formations and sediments -- the researchers showed that the global water cycle has changed during periods of higher and lower temperatures in the recent past.
Published Human emissions increased mercury in the atmosphere sevenfold



Researchers estimated that before humans started pumping mercury into the atmosphere, it contained on average about 580 megagrams of mercury. However, in 2015, independent research that looked at all available atmospheric measurements estimated the atmospheric mercury reservoir was about 4,000 Mg -- nearly 7 times larger than the natural condition estimated in this study.
Published New map of 20th century land use in Britain helps researchers demystify biodiversity change



Researchers have mapped how land use changed across Britain throughout the last century. The new map reveals how and where some 50 per cent of semi-natural grassland was lost, including 90 per cent of the country's lowland meadows and pasture, as the nation intensified its agriculture.
Published Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat



A new Antarctic ice sheet modeling study suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster.
Published Mystery of volcanic tsunami solved after 373 years



The explosion of the underwater volcano Kolumbo in the Aegean Sea in 1650 triggered a destructive tsunami that was described by historical eye witnesses. A group of researchers has now surveyed Kolumbo's underwater crater with modern imaging technology and reconstructed the historical events. They found that the eyewitness accounts of the natural disaster can only be described by a combination of a landslide followed by an explosive eruption.
Published Climate change likely impacted human populations in the Neolithic and Bronze Age



Human populations in Neolithic Europe fluctuated with changing climates, according to a new study.