Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Earthquakes, Offbeat: Space
Published Tadpole playing around black hole



A peculiar cloud of gas, nicknamed the Tadpole due to its shape, appears to be revolving around a space devoid of any bright objects. This suggests that the Tadpole is orbiting a dark object, most likely a black hole 100,000 times more massive than the Sun. Future observations will help determine what is responsible for the shape and motion of the Tadpole.
Published Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?



If you want to build a habitable planet, ice is a key ingredient. The ice can be found in enormous clouds in the Universe and it is the main carrier of the necessary elements such as carbon, hydrogen, oxygen, nitrogen and sulphur. These elements are part of the atmosphere around planets and part of molecules like sugar, alcohols and simple amino acids as well. The new James Webb Space Telescope (JWST) has contributed to the discovery of different ices in a molecular cloud, 'Chameleon 1' -- one of the coldest and darkest regions to have ever been explored. Astronomers assume that these types of molecules were also present in the cold cloud of gas and dust forming our own solar system.
Published Study quantifies global impact of electricity in dust storms on Mars


Mars is infamous for its intense dust storms, some of which kick up enough dust to be seen by telescopes on Earth. When dust particles rub against each other, as they do in Martian dust storms, they can become electrified. New research shows that one particularly efficient way to move chlorine from the ground to the air on Mars is by way of reactions set off by electrical discharge generated in dust activities.
Published Earthquake scientists have a new tool in the race to find the next big one


New research on friction between faults could aid in predicting the world's most powerful earthquakes. Researchers discovered that fault surfaces bond together, or heal, after an earthquake. A fault that is slow to heal is more likely to move harmlessly, while one that heals quickly is more likely to stick until it breaks in a large, damaging earthquake. Tests allowed them to calculate a slow, harmless type of tremor. The discovery alone won't allow scientists to predict when the next big one will strike but it does give researchers a valuable new way to investigate the causes and potential for a large, damaging earthquake to happen, and guide efforts to monitor large faults like Cascadia in the Pacific Northwest.
Published Hubble captures the start of a new spoke season at Saturn


Since their discovery by NASA's Voyager mission in the 1980s, temporary 'spoke' features across Saturn's rings have fascinated scientists, yet eluded explanation. They have been observed in the years preceding and following the planet's equinox, becoming more prominent as the date approaches. Saturn's upcoming autumnal equinox of the northern hemisphere on May 6, 2025, means that spoke season has come again. NASA's Hubble Space Telescope will be on the job studying the spokes, thanks to time dedicated to Saturn in the mission's ongoing Outer Planet Atmospheres Legacy (OPAL) program. Are the smudgy features related to Saturn's magnetic field and its interaction with the solar wind, as prevailing theory suggests? Confirmation could come in this spoke season, as scientists combine archival data from NASA's Cassini mission with new Hubble observations.
Published Exact magma locations may improve volcanic eruption forecasts


Cornell University researchers have unearthed precise, microscopic clues to where magma is stored, offering a way to better assess the risk of volcanic eruptions.
Published A new ring system discovered in our Solar System


Scientists have discovered a new ring system around a dwarf planet on the edge of the Solar System. The ring system orbits much further out than is typical for other ring systems, calling into question current theories of how ring systems are formed.
Published Footprints of galactic immigration uncovered in Andromeda galaxy


Astronomers have uncovered striking new evidence for a mass migration of stars into the Andromeda Galaxy. Intricate patterns in the motions of stars reveal an immigration history very similar to that of the Milky Way.
Published A star is born: Study reveals complex chemistry inside 'stellar nurseries'


The universe's carbon atoms complete a journey that spans eons -- forming in the hearts of dying stars, then becoming a part of planets and even living organisms. Now, a team has uncovered the chemistry behind one tiny, but critical, step in this process.
Published Scientists detect molten rock layer hidden under Earth's tectonic plates


Scientists have discovered a new layer of partly molten rock under the Earth's crust that might help settle a long-standing debate about how tectonic plates move. The molten layer is located about 100 miles from the surface and is part of the asthenosphere, which is important for plate tectonics because it forms a relatively soft boundary that lets tectonic plates move through the mantle. The researchers found, however that the melt does not appear to notably influence the flow of mantle rocks. Instead, they say, the discovery confirms that the convection of heat and rock in the mantle are the prevailing influence on the motion of the plates.
Published Star formation in distant galaxies by the James Webb Space Telescope


Thanks to the James Webb Space Telescope's first images of galaxy clusters, researchers have, for the very first time, been able to examine very compact structures of star clusters inside galaxies, so-called clumps.
Published Hubble directly measures mass of a lone white dwarf


Astronomers have directly measured the mass of a single, isolated white dwarf -- the surviving core of a burned-out, Sun-like star. Researchers found that the white dwarf is 56 percent the mass of our Sun. This agrees with earlier theoretical predictions of the white dwarf's mass and corroborates current theories of how white dwarfs evolve as the end product of a typical star's evolution. The unique observation yields insights into theories of the structure and composition of white dwarfs.
Published Astronomers uncover a one-in-ten-billion binary star system: Kilonova progenitor system


Astronomers using data from the SMARTS 1.5-meter Telescope at the Cerro Tololo Inter-American Observatory (CTIO), have made the first confirmed detection of a star system that will one day form a kilonova -- the ultra-powerful, gold-producing explosion created by merging neutron stars. These systems are so phenomenally rare that only about 10 such systems are thought to exist in the entire Milky Way.
Published The bubbling universe: A previously unknown phase transition in the early universe


What happened shortly after the universe was born in the Big Bang and began to expand? Bubbles occurred and a previously unknown phase transition happened, according to particle physicists.
Published Researchers complete first real-world study of Martian helicopter dust dynamics


Researchers have completed the first real-world study of Martian dust dynamics based on Ingenuity's historic first flights on the Red Planet, paving the way for future extraterrestrial rotorcraft missions. The work could support NASA's Mars Sample Return Program, which will retrieve samples collected by Perseverance, or the Dragonfly mission that will set course for Titan, Saturn's largest moon, in 2027.
Published Evidence that Saturn's moon Mimas is a stealth ocean world


When a scientist discovered surprising evidence that Saturn's smallest, innermost moon could generate the right amount of heat to support a liquid internal ocean, colleagues began studying Mimas' surface to understand how its interior may have evolved. Numerical simulations of the moon's Herschel impact basin, the most striking feature on its heavily cratered surface, determined that the basin's structure and the lack of tectonics on Mimas are compatible with a thinning ice shell and geologically young ocean.
Published Will machine learning help us find extraterrestrial life?


Researchers have applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.
Published Volcano-like rupture could have caused magnetar slowdown


In October 2020, a highly magnetic neutron star called SGR 1935+2154 abruptly began spinning more slowly. Astrophysicist now show the magnetar's rotational slowdown could have been caused by a volcano-like rupture near its magnetic pole.
Published Starry tail tells the tale of dwarf galaxy evolution


A giant diffuse tail of stars has been discovered emanating from a large, faint dwarf galaxy. The presence of a tail indicates that the galaxy has experienced recent interaction with another galaxy. This is an important clue for understanding how so called 'ultra-diffuse' galaxies are formed.
Published Looking back at the Tonga eruption


A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.