Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geography, Offbeat: Space
Published Up to 30 percent more time: Climate change makes it harder for women to collect water, study finds



By 2050, climate change could increase the amount of time women in households without running water spend collecting water by up to 30 percent on global average, according to a new study. In regions of South America and Southeast Asia, the time spent collecting water could double due to higher temperatures. Scientists estimate the large welfare losses that could result from climate impacts and highlights how women are particularly vulnerable to changing future climate conditions.
Published Iron meteorites hint that our infant solar system was more doughnut than dartboard



Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.
Published Supermassive black hole appears to grow like a baby star



Supermassive black holes pose unanswered questions for astronomers around the world, not least 'How do they grow so big?' Now, an international team of astronomers has discovered a powerful rotating, magnetic wind that they believe is helping a galaxy's central supermassive black hole to grow. The swirling wind, revealed with the help of the ALMA telescope in nearby galaxy ESO320-G030, suggests that similar processes are involved both in black hole growth and the birth of stars.
Published Titan's lakes may be shaped by waves



Geologists studied Titan's shorelines and showed through simulations that coastlines of the moon's methane- and ethane-filled seas have likely been shaped by waves. Until now, scientists have found indirect and conflicting signs of wave activity, based on Cassini images of Titan's surface.
Published Jupiter's great red spot is not the same one Cassini observed in 1600s



Jupiter's iconic Great Red Spot has persisted for at least 190 years and is likely a different spot from the one observed by the astronomer Giovanni Domenico Cassini in 1665, a new study reports. The Great Red Spot we see today likely formed because of an instability in the planet's intense atmospheric winds, producing a long, persistent atmospheric cell, the study also finds.
Published When in drought: Researchers map which parts of the Amazon are most vulnerable to climate change



Some areas of the Amazon rainforest are more resilient to drought than others, new research shows. But if not managed carefully, we could 'threaten the integrity of the whole system,' researchers say.
Published What happens when neutron stars collide?



New simulations show that hot neutrinos created at the interface of merging binary neutron stars are briefy trapped and remain out of equilibrium with the cold cores of the stars for 2 to 3 milliseconds.
Published Astronomers see a massive black hole awaken in real time



In late 2019 the previously unremarkable galaxy SDSS1335+0728 suddenly started shining brighter than ever before. To understand why, astronomers have used data from several space and ground-based observatories, including the European Southern Observatory's Very Large Telescope (ESO's VLT), to track how the galaxy's brightness has varied. In a study out today, they conclude that they are witnessing changes never seen before in a galaxy -- likely the result of the sudden awakening of the massive black hole at its core.
Published Climate change: rising temperatures may impact groundwater quality



As the world's largest unfrozen freshwater resource, groundwater is crucial for life on Earth. Researchers have investigated how global warming is affecting groundwater temperatures and what that means for humanity and the environment. Their study indicates that by 2100, more than 75 million people are likely to be living in regions where the groundwater temperature exceeds the highest threshold set for drinking water by any country.
Published An earthquake changed the course of the Ganges: Could it happen again?



A major earthquake 2,500 years ago caused one of the largest rivers on Earth to abruptly change course, according to a new study. The previously undocumented quake rerouted the main channel of the Ganges River in what is now densely populated Bangladesh, which remains vulnerable to big quakes.
Published Satellites to monitor marine debris from space



Detecting marine debris from space is now a reality, according to a new study. Until now, the amount of litter -- mostly plastic -- on the sea surface was rarely high enough to generate a detectable signal from space. However, using supercomputers and advanced search algorithms, the research team has demonstrated that satellites are an effective tool for estimating the amount of litter in the sea.
Published Modified gravity theory: A million light years and still going



In a breakthrough discovery that challenges the conventional understanding of cosmology, scientists have unearthed new evidence that could reshape our perception of the cosmos. New research shows that rotation curves of galaxies stay flat indefinitely far out, corroborating predictions of modified gravity theory as an alternative to dark matter.
Published Scientists develop 3D printed vacuum system that aims to trap dark matter



Using a specially designed 3D printed vacuum system, scientists have developed a way to 'trap' dark matter with the aim of detecting domain walls, this will be a significant step forwards in unravelling some of the mysteries of the universe.
Published Pair of merging quasars at cosmic dawn



Astronomers have discovered a double-record-breaking pair of quasars. Not only are they the most distant pair of merging quasars ever found, but also the only pair confirmed in the bygone era of the Universe's earliest formation.
Published Investigating the origins of the crab nebula



A team of scientists used NASA's James Webb Space Telescope to parse the composition of the Crab Nebula, a supernova remnant located 6,500 light-years away in the constellation Taurus.
Published High-precision measurements challenge our understanding of Cepheids



Scientists have clocked the speed of Cepheid stars -- 'standard candles' that help us measure the size of the universe -- with unprecedented precision, offering exciting new insights about them.
Published A conservation market could incentivize global ocean protection



Thirty-by-thirty: protect 30% of the planet by 2030. While conservation is popular in principle, the costs of actually enacting it often stall even the most earnest efforts. Researchers have now proposed a market-based approach to achieving the 30x30 targets in the ocean.
Published Pair plasmas found in deep space can now be generated in the lab



Researchers have experimentally generated high-density relativistic electron-positron pair-plasma beams by producing two to three orders of magnitude more pairs than previously reported.
Published Scientists unravel drivers of the global zinc cycle in our oceans, with implications for a changing climate



The understanding of the global zinc cycle in our oceans has important implications in the context of warming oceans. A warmer climate increases erosion, leading to more dust in the atmosphere and consequently more dust being deposited into the oceans. More dust means more scavenging of zinc particles, leading to less zinc being available to sustain phytoplankton and other marine life, thereby diminishing the oceans' ability to absorb carbon.
Published Watery planets orbiting dead stars may be good candidates for studying life -- if they can survive long enough



The small footprint and dim light of white dwarfs, remnants of stars that have burned through their fuel, may make excellent backdrops for studying planets with enough water to harbor life. The trick is spotting the shadow of a planet against a former star that has withered to a fraction of its size and finding that it's a planet that has kept its water oceans for billions of years even after riding out the star's explosive and violent final throes. A new study of the dynamics of white dwarf systems suggests that, in theory, some watery planets may indeed thread the celestial needles necessary to await discovery and closer scrutiny.