Showing 20 articles starting at article 701
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Offbeat: Space
Published Hubble directly measures mass of a lone white dwarf


Astronomers have directly measured the mass of a single, isolated white dwarf -- the surviving core of a burned-out, Sun-like star. Researchers found that the white dwarf is 56 percent the mass of our Sun. This agrees with earlier theoretical predictions of the white dwarf's mass and corroborates current theories of how white dwarfs evolve as the end product of a typical star's evolution. The unique observation yields insights into theories of the structure and composition of white dwarfs.
Published Astronomers uncover a one-in-ten-billion binary star system: Kilonova progenitor system


Astronomers using data from the SMARTS 1.5-meter Telescope at the Cerro Tololo Inter-American Observatory (CTIO), have made the first confirmed detection of a star system that will one day form a kilonova -- the ultra-powerful, gold-producing explosion created by merging neutron stars. These systems are so phenomenally rare that only about 10 such systems are thought to exist in the entire Milky Way.
Published The bubbling universe: A previously unknown phase transition in the early universe


What happened shortly after the universe was born in the Big Bang and began to expand? Bubbles occurred and a previously unknown phase transition happened, according to particle physicists.
Published Researchers complete first real-world study of Martian helicopter dust dynamics


Researchers have completed the first real-world study of Martian dust dynamics based on Ingenuity's historic first flights on the Red Planet, paving the way for future extraterrestrial rotorcraft missions. The work could support NASA's Mars Sample Return Program, which will retrieve samples collected by Perseverance, or the Dragonfly mission that will set course for Titan, Saturn's largest moon, in 2027.
Published Evidence that Saturn's moon Mimas is a stealth ocean world


When a scientist discovered surprising evidence that Saturn's smallest, innermost moon could generate the right amount of heat to support a liquid internal ocean, colleagues began studying Mimas' surface to understand how its interior may have evolved. Numerical simulations of the moon's Herschel impact basin, the most striking feature on its heavily cratered surface, determined that the basin's structure and the lack of tectonics on Mimas are compatible with a thinning ice shell and geologically young ocean.
Published Will machine learning help us find extraterrestrial life?


Researchers have applied a deep learning technique to a previously studied dataset of nearby stars and uncovered eight previously unidentified signals of interest.
Published Volcano-like rupture could have caused magnetar slowdown


In October 2020, a highly magnetic neutron star called SGR 1935+2154 abruptly began spinning more slowly. Astrophysicist now show the magnetar's rotational slowdown could have been caused by a volcano-like rupture near its magnetic pole.
Published Starry tail tells the tale of dwarf galaxy evolution


A giant diffuse tail of stars has been discovered emanating from a large, faint dwarf galaxy. The presence of a tail indicates that the galaxy has experienced recent interaction with another galaxy. This is an important clue for understanding how so called 'ultra-diffuse' galaxies are formed.
Published Looking back at the Tonga eruption


A 'back-projection' technique reveals new details of the volcanic eruption in Tonga that literally shook the world.
Published Mercury helps to detail Earth's most massive extinction event


Scientists are working to understand the cause and how the events of the LPME unfolded by focusing on mercury from Siberian volcanoes that ended up in sediments in Australia and South Africa.
Published Meteorites reveal likely origin of Earth's volatile chemicals


By analyzing meteorites, researchers have uncovered the likely far-flung origin of Earth's volatile chemicals, some of which form the building blocks of life.
Published Solar System formed from 'poorly mixed cake batter,' isotope research shows


Earth's potassium arrived by meteoritic delivery service finds new research led by Earth and planetary scientists. Their work shows that some primitive meteorites contain a different mix of potassium isotopes than those found in other, more-chemically processed meteorites. These results can help elucidate the processes that shaped our Solar System and determined the composition of its planets.
Published NASA's Fermi detects first gamma-ray eclipses from 'spider' star systems


Scientists have discovered the first gamma-ray eclipses from a special type of binary star system using data from NASA's Fermi Gamma-ray Space Telescope. These so-called spider systems each contain a pulsar -- the superdense, rapidly rotating remains of a star that exploded in a supernova -- that slowly erodes its companion.
Published Webb spies Chariklo ring system with high-precision technique


In an observational feat of high precision, scientists used a new technique with NASA's James Webb Space Telescope to capture the shadows of starlight cast by the thin rings of Chariklo. Chariklo is an icy, small body, but the largest of the known Centaur population, located more than 2 billion miles away beyond the orbit of Saturn.
Published Satellite data shows sustained severe drought in Europe


Europe lacks groundwater -- a lot of groundwater. The continent has already been suffering from a severe drought since 2018. This is confirmed by satellite data.
Published Plasma thrusters used on satellites could be much more powerful



It was believed that Hall thrusters, an efficient kind of electric propulsion widely used in orbit, need to be large to produce a lot of thrust. Now, a new study suggests that smaller Hall thrusters can generate much more thrust -- potentially making them candidates for interplanetary missions.
Published Immense diversity and interdependence in high temp deep-sea microorganism communities


A new study finds that microorganisms live in richly diverse and interdependent communities in high-temperature geothermal environments in the deep sea. By constructing genomes of 3,635 Bacteria and Archaea from 40 different rock communities, researchers discovered at least 500 new genera and have evidence for two new phyla. Samples from the deep-sea Brothers volcano were especially enriched with different kinds of microorganisms, many endemic to the volcano. The genomic data from this study also showed that many of these organisms depend on one another for survival. Some microorganisms cannot metabolize all of the nutrients they need to survive so they rely on nutrients created by other species in a process known as a 'metabolic handoff.'
Published How a 3 cm glass sphere could help scientists understand space weather


Space weather can interfere with spaceflight and the operation of satellites, but the phenomenon is very difficult to study on Earth because of the difference in gravity. Researchers effectively reproduced the type of gravity that exists on or near stars and other planets inside of a glass sphere measuring 3 centimeters in diameter, or about 1.2 inches. The achievement could help scientists overcome the limiting role of gravity in experiments that are intended to model conditions in stars and other planets.
Published Asteroid findings from specks of space dust could save the planet


New research into the durability and age of an ancient asteroid made of rocky rubble and dust, revealed significant findings that could contribute to potentially saving the planet if one ever hurtled toward Earth.
Published Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes


On the short-lived island of Hunga Tonga Hunga Ha'apai, researchers discovered a unique microbial community that metabolizes sulfur and atmospheric gases, similar to organisms found in deep sea vents or hot springs.