Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Offbeat: Computers and Math
Published A blue miracle: How sapphires formed in volcanoes



Sapphires are among the most precious gems, yet they consist solely of chemically 'contaminated' aluminum oxide, or corundum. It is widely assumed that these crystals with their characteristically blue color come from deep crustal rocks and accidentally ended up on the Earth's surface as magma ascended. Geoscientists have now been able to show that the sapphire grains found in the Eifel (Germany) formed in association with volcanism.
Published Dark matter: A camera trap for the invisible



AI-powered image recognition could give researchers a new tool in hunt for dark matter.
Published Shape-shifting 'transformer bots' inspired by origami



Inspired by the paper-folding art of origami, engineers have discovered a way to make a single plastic cubed structure transform into more than 1,000 configurations using only three active motors.
Published Robotics: Self-powered 'bugs' can skim across water to detect environmental data



Researchers have developed a self-powered 'bug' that can skim across the water, and they hope it will revolutionize aquatic robotics.
Published Spin qubits go trampolining



Researchers have developed somersaulting spin qubits for universal quantum logic. This achievement may enable efficient control of large semiconductor qubit arrays. The research group recently published their demonstration of hopping spins and somersaulting spins.
Published Foam fluidics showcase lab's creative approach to circuit design



Engineers have shown that something as simple as the flow of air through open-cell foam can be used to perform digital computation, analog sensing and combined digital-analog control in soft textile-based wearable systems.
Published New study supports stable mantle chemistry dating back to Earth's early geologic history and over its prodigious evolution



A new analysis of rocks thought to be at least 2.5 billion years old helps clarify the chemical history of Earth's mantle -- the geologic layer beneath the planet's crust. The findings hone scientists' understanding of Earth's earliest geologic processes, and they provide new evidence in a decades-long scientific debate about the geologic history of Earth. Specifically, the results provide evidence that the oxidation state of the vast majority of Earth's mantle has remained stable through geologic time and has not undergone major transitions, contrary to what has been suggested previously by other researchers.
Published Hot traces in rock



Fluids circulating underground change rocks over the course of time. These processes must be taken into account if they are to be used as a climate archive. Researchers have used 380-million-year-old limestones from Hagen-Hohenlimburg to show in detail which climate information is still preserved in the rock.
Published Development of 'living robots' needs regulation and public debate



Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics -- a ground-breaking science which fuses artificial components with living tissue and cells.
Published Can consciousness exist in a computer simulation?



A new essay explores which conditions must be met for consciousness to exist. At least one of them can't be found in a computer.
Published Ant insights lead to robot navigation breakthrough



Have you ever wondered how insects are able to go so far beyond their home and still find their way? The answer to this question is not only relevant to biology but also to making the AI for tiny, autonomous robots. Drone-researchers felt inspired by biological findings on how ants visually recognize their environment and combine it with counting their steps in order to get safely back home. They have used these insights to create an insect-inspired autonomous navigation strategy for tiny, lightweight robots. It allows such robots to come back home after long trajectories, while requiring extremely little computation and memory (0.65 kiloByte per 100 m). In the future, tiny autonomous robots could find a wide range of uses, from monitoring stock in warehouses to finding gas leaks in industrial sites.
Published Want to spot a deepfake? Look for the stars in their eyes



In an era when the creation of artificial intelligence (AI) images is at the fingertips of the masses, the ability to detect fake pictures -- particularly deepfakes of people -- is becoming increasingly important. So what if you could tell just by looking into someone's eyes? That's the compelling finding of new research which suggests that AI-generated fakes can be spotted by analyzing human eyes in the same way that astronomers study pictures of galaxies.
Published Completely stretchy lithium-ion battery for flexible electronics



When you think of a battery, you probably don't think stretchy. But batteries will need this shape-shifting quality to be incorporated into flexible electronics, which are gaining traction for wearable health monitors. Now, researchers report a lithium-ion battery with entirely stretchable components, including an electrolyte layer that can expand by 5000%, and it retains its charge storage capacity after nearly 70 charge/discharge cycles.
Published Enzyme-powered 'snot bots' help deliver drugs in sticky situations



Snot might not be the first place you'd expect nanobots to be swimming around. But this slimy secretion exists in more places than just your nose and piles of dirty tissues -- it also lines and helps protect the lungs, stomach, intestines and eyes. And now, researchers have demonstrated in mice that their tiny, enzyme-powered 'snot bots' can push through the defensive, sticky layer and potentially deliver drugs more efficiently.
Published A new neural network makes decisions like a human would



Researchers are training neural networks to make decisions more like humans would. This science of human decision-making is only just being applied to machine learning, but developing a neural network even closer to the actual human brain may make it more reliable, according to the researchers.
Published Scientists discover missing piece in climate models



As the planet continues to warm due to human-driven climate change, accurate computer climate models will be key in helping illuminate exactly how the climate will continue to be altered in the years ahead.
Published Neural networks made of light



Scientists propose a new way of implementing a neural network with an optical system which could make machine learning more sustainable in the future. In a new paper, the researchers have demonstrated a method much simpler than previous approaches.
Published Learning dance moves could help humanoid robots work better with humans



Engineers have trained a humanoid robot to perform a variety of expressive movements, from simple dance routines to gestures like waving, high-fiving and hugging, all while maintaining a steady gait on diverse terrains. This work marks a step towards building robots that perform more complex and human-like motions.
Published A new twist on artificial 'muscles' for safer, softer robots



Engineers have developed a new soft, flexible device that makes robots move by expanding and contracting -- just like a human muscle. To demonstrate their new device, called an actuator, the researchers used it to create a cylindrical, worm-like soft robot and an artificial bicep. In experiments, the cylindrical soft robot navigated the tight, hairpin curves of a narrow pipe-like environment, and the bicep was able to lift a 500-gram weight 5,000 times in a row without failing.
Published Building materials for water-rich planets in the early solar system



Age data for certain classes of meteorite have made it possible to gain new findings on the origin of small water-rich astronomical bodies in the early solar system. These planetesimals continually supplied building materials for planets -- also for the Earth, whose original material contained little water. The Earth received its actual water through planetesimals, which emerged at low temperatures in the outer solar system, as shown by computational models carried out by an international research teach with participation by earth scientists.