Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geology, Offbeat: Computers and Math
Published New small laser device can help detect signs of life on other planets


As space missions delve deeper into the outer solar system, the need for more compact, resource-conserving and accurate analytical tools has become increasingly critical -- especially as the hunt for extraterrestrial life and habitable planets or moons continues. A University of Maryland-led team developed a new instrument specifically tailored to the needs of NASA space missions. Their mini laser-sourced analyzer is significantly smaller and more resource efficient than its predecessors--all without compromising the quality of its ability to analyze planetary material samples and potential biological activity onsite.
Published Study offers most detailed glimpse yet of planet's last 11,000 summers and winters


An international team of collaborators have revealed the most detailed look yet at the planet's recent climactic history, including summer and winter temperatures dating back 11,000 years to the beginning of what is known as the Holocene.
Published A soft, stimulating scaffold supports brain cell development ex vivo


Brain-computer interface companies like Neuralink are in the news a lot these days for their potential to revolutionize how humans interact with machines, but electrodes are not the most brain-friendly materials -- they're hard and stiff, while brains are soft and squishy, which limits their efficacy and increases the risk of damaging brain tissue. A new hydrogel-based electrode developed at the Wyss Institute solves that problem by providing a tunable, conductive scaffold that human neurons and other cell types feel right at home in. Not only does the scaffold mimic the soft, porous conditions of brain tissue, it supported the growth and differentiation of human neural progenitor cells (NPCs) into multiple different brain cell types for up to 12 weeks. The achievement is reported in Advanced Healthcare Materials. Not only can the new electrode be used to study the formation of human neural networks in vitro, it could enable the creation of implantable devices that more seamlessly integrate with a patient's brain tissue, improving performance and decreasing risk of injury.
Published Next-generation wireless technology may leverage the human body for energy


While you may be just starting to reap the advantages of 5G wireless technology, researchers throughout the world are already working hard on the future: 6G. One of the most promising breakthroughs in 6G telecommunications is the possibility of Visible Light Communication (VLC), which is like a wireless version of fiberoptics, using flashes of light to transmit information. Now, a team has announced that they have invented a low-cost, innovative way to harvest the waste energy from VLC by using the human body as an antenna. This waste energy can be recycled to power an array of wearable devices, or even, perhaps, larger electronics.
Published Map of ancient ocean 'dead zones' could predict future locations, impacts


Researchers have created a map of oceanic 'dead zones' that existed during the Pliocene epoch, when the Earth's climate was two to three degrees warmer than it is now. The work could provide a glimpse into the locations and potential impacts of future low oxygen zones in a warmer Earth's oceans.
Published Self-powered, printable smart sensors created from emerging semiconductors could mean cheaper, greener Internet of Things


Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life -- but requires trillions of such small devices. A professor believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.
Published Human brain organoids implanted into mouse cortex respond to visual stimuli for first time


A team of engineers and neuroscientists has demonstrated for the first time that human brain organoids implanted in mice have established functional connectivity to the animals' cortex and responded to external sensory stimuli. The implanted organoids reacted to visual stimuli in the same way as surrounding tissues, an observation that researchers were able to make in real time over several months thanks to an innovative experimental setup that combines transparent graphene microelectrode arrays and two-photon imaging.
Published Bering Land Bridge formed surprisingly late during last ice age


A new study that reconstructs the history of sea level at the Bering Strait shows that the Bering Land Bridge connecting Asia to North America did not emerge until around 35,700 years ago, less than 10,000 years before the height of the last ice age (known as the Last Glacial Maximum). The findings indicate that the growth of the ice sheets -- and the resulting drop in sea level -- occurred surprisingly quickly and much later in the glacial cycle than previous studies had suggested.
Published Designing with DNA


Marvel at the tiny nanoscale structures emerging from labs, and it's easy to imagine you're browsing a catalog of the world's smallest pottery: itty-bitty vases, bowls, and spheres. But instead of making them from clay, the researchers designed these objects out of threadlike molecules of DNA, bent and folded into complex three-dimensional objects. These creations demonstrate the possibilities of a new open-source software program.
Published Shrinking hydrogels enlarge nanofabrication options



Researchers have developed a strategy for creating ultrahigh-resolution, complex 3D nanostructures out of various materials.
Published Hawai'i earthquake swarm caused by magma moving through 'sills'


A machine-learning algorithm reveals the shape of massive subterranean structures linking active volcanoes.
Published New X-ray imaging technique to study the transient phases of quantum materials



An international team of researchers has recently demonstrated for the first time the use of a new lensless ultrafast X-Ray method to image phase transitions. This new method enables the direct observation of the dynamics of quantum materials at the nanoscale.
Published New study models the transmission of foreshock waves towards Earth


As the supersonic solar wind surges towards Earth, its interaction with our planet's magnetic field creates a shock to deflect its flow, and a foreshock filled with electromagnetic waves. How these waves can propagate to the other side of the shock has long remained a mystery.
Published Predicting lava flow


A team is collecting data that will be used to create models that can help improve lava flow forecasting tools that are useful in determining how hazards impact populations. One such tool, known as MOLASSES, is a simulation engine that forecasts inundation areas of lava flow.
Published Changes in Earth's orbit may have triggered ancient warming event


Changes in Earth's orbit that favored hotter conditions may have helped trigger a rapid global warming event 56 million years ago. Researchers found the shape of Earth's orbit, or eccentricity, and the wobble in its rotation, or precession, favored hotter conditions at the onset of the PETM and that these orbital configurations together may have played a role in triggering the event.
Published Fish larvae find their way using external cues


The first global analysis of larval orientation studies found that millimeter-size fish babies consistently use external cues to find their way in the open ocean. There are many external cues available to marine fish including the Sun, Earth's magnetic field, and sounds. The new study offers important insight into understanding this perilous phase of marine fish.
Published Fossil site reveals giant arthropods dominated the seas 470 million years ago


Discoveries at a major new fossil site in Morocco suggest giant arthropods -- relatives of modern creatures including shrimps, insects and spiders -- dominated the seas 470 million years ago.
Published Signals from the ionosphere could improve tsunami forecasts


The powerful volcanic eruption in January 2022 created ripple effects throughout the world's atmosphere and oceans. Analysis of the Hunga Tonga eruption shows how signals from the ionosphere could help monitor future volcanoes and tsunamis.
Published Finding faults deeply stressful


Evidence that a complete stress release may have contributed to the 2011 Tohoku earthquake that broke records. Both sedimentary formations above and below the plate boundary fault lie in the stress state of normal faults in which vertical stress is greater than maximum horizontal stress. The new data show good consistency with previous results above the fault -- at the boundary between the North American plate and the subducting Pacific plate -- suggesting that combining geophysical data and core samples to comprehensively investigate stress states is effective.
Published Fresh understanding of ice age frequency


A chance find of an unstudied Antarctic sediment core has led researchers to flip our understanding of how often ice ages occurred in Antarctica.