Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Offbeat: Computers and Math
Published ROSE: Revolutionary, nature-inspired soft embracing robotic gripper (via sciencedaily.com)
Soft robotic grippers could greatly increase productivity in many fields. However, currently existing designs are overly complex and expensive. A research team has developed ROSE, a novel embracing soft gripper inspired by the blooming and closing of rose flowers. Bearing a surprisingly simple, inexpensive, and scalable design, ROSE can pick up many kinds of objects without damaging them, even in challenging environments and conditions.
Published New superconductors can be built atom by atom (via sciencedaily.com)
The future of electronics will be based on novel kinds of materials. Sometimes, however, the naturally occurring topology of atoms makes it difficult for new physical effects to be created. To tackle this problem, researchers have now successfully designed superconductors one atom at a time, creating new states of matter.
Published Participating in genetic studies is in your genes (via sciencedaily.com) Original source
Why do some people take part in genetic studies while others do not? The answer may lie within our genetic makeup. According to a groundbreaking study, people who participate in genetic studies are genetically more likely to do so, leaving detectable 'footprints' in genetics data. This breakthrough equips researchers with the ability to identify and address participation bias, a significant challenge in genetic research.
Published Surgical and engineering innovations enable unprecedented control over every finger of a bionic hand (via sciencedaily.com)
For the first time, a person with an arm amputation can manipulate each finger of a bionic hand as if it was his own. Thanks to revolutionary surgical and engineering advancements that seamlessly merge humans with machines, this breakthrough offers new hope and possibilities for people with amputations worldwide. A study presents the first documented case of an individual whose body was surgically modified to incorporate implanted sensors and a skeletal implant. A.I. algorithms then translated the user's intentions into movement of the prosthesis.
Published Generative AI 'fools' scientists with artificial data, bringing automated data analysis closer (via sciencedaily.com) Original source
The same AI technology used to mimic human art can now synthesize artificial scientific data, advancing efforts toward fully automated data analysis.
Published Pump powers soft robots, makes cocktails (via sciencedaily.com)
Over the past several years, researchers have been developing soft analogues of traditionally rigid robotic components. In fluid-driven robotic systems, pumps control the pressure or flow of the liquid that powers the robot's movement. Most pumps available today for soft robotics are either too large and rigid to fit onboard, not powerful enough for actuation or only work with specific fluids. Researchers have now developed a compact, soft pump with adjustable pressure flow versatile enough to pump a variety of fluids with varying viscosity, including gin, juice, and coconut milk, and powerful enough to power soft haptic devices and a soft robotic finger.
Published Training robots how to learn, make decisions on the fly (via sciencedaily.com) Original source
Mars rovers have teams of human experts on Earth telling them what to do. But robots on lander missions to moons orbiting Saturn or Jupiter are too far away to receive timely commands from Earth. Researchers developed a novel learning-based method so robots on extraterrestrial bodies can make decisions on their own about where and how to scoop up terrain samples.
Published Capturing the immense potential of microscopic DNA for data storage (via sciencedaily.com) Original source
A 'biological camera' bypasses the constraints of current DNA storage methods, harnessing living cells and their inherent biological mechanisms to encode and store data. This represents a significant breakthrough in encoding and storing images directly within DNA, creating a new model for information storage reminiscent of a digital camera. Led by Principal Investigator Associate Professor Chueh Loo Poh from the College of Design and Engineering at the National University of Singapore, and the NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), the team's findings, which could potentially shake up the data-storage industry, were published in Nature Communications on 3 July 2023.
Published Revolutionary self-sensing electric artificial muscles (via sciencedaily.com)
Researchers have made groundbreaking advancements in bionics with the development of a new electric variable-stiffness artificial muscle. This innovative technology possesses self-sensing capabilities and has the potential to revolutionize soft robotics and medical applications. The artificial muscle seamlessly transitions between soft and hard states, while also sensing forces and deformations. With flexibility and stretchability similar to natural muscle, it can be integrated into intricate soft robotic systems and adapt to various shapes. By adjusting voltages, the muscle rapidly changes its stiffness and can monitor its own deformation through resistance changes. The fabrication process is simple and reliable, making it ideal for a range of applications, including aiding individuals with disabilities or patients in rehabilitation training.
Published Bees make decisions better and faster than we do, for the things that matter to them (via sciencedaily.com)
Research reveals how millions of years of evolution has engineered honey bees to make fast decisions and reduce risk.
Published Number cruncher calculates whether whales are acting weirdly (via sciencedaily.com) Original source
We humans can be a scary acquaintance for whales in the wild. This includes marine biologists tagging them with measuring devices to understand them better. These experiences can make whales behave erratically for a while. Such behaviour can affect research quality and highlights an animal ethics dilemma. Now, researchers have figured out how to solve the problems with math.
Published AI tests into top 1% for original creative thinking (via sciencedaily.com) Original source
New research suggests artificial intelligence can match the top 1% of human thinkers on a standard test for creativity.
Published Researchers create highly conductive metallic gel for 3D printing (via sciencedaily.com)
Researchers have developed a metallic gel that is highly electrically conductive and can be used to print three-dimensional (3D) solid objects at room temperature.
Published Artificial cells demonstrate that 'life finds a way' (via sciencedaily.com) Original source
A study using a synthetic 'minimal cell' organism stripped down to the 'bare essentials' for life demonstrates the tenacity of organism's power to evolve and adapt, even in the face of an unnatural genome that would seemingly provide little flexibility.
Published Growing bio-inspired polymer brains for artificial neural networks (via sciencedaily.com) Original source
A new method for connecting neurons in neuromorphic wetware has been developed. The wetware comprises conductive polymer wires grown in a three-dimensional configuration, done by applying square-wave voltage to electrodes submerged in a precursor solution. The voltage can modify wire conductance, allowing the network to be trained. This fabricated network is able to perform unsupervised Hebbian learning and spike-based learning.
Published Displays controlled by flexible fins and liquid droplets more versatile, efficient than LED screens (via sciencedaily.com)
Flexible displays that can change color, convey information and even send veiled messages via infrared radiation are now possible, thanks to new research. Engineers inspired by the morphing skins of animals like chameleons and octopuses have developed capillary-controlled robotic flapping fins to create switchable optical and infrared light multipixel displays that are 1,000 times more energy efficient than light-emitting devices.
Published Turning old maps into 3D digital models of lost neighborhoods (via sciencedaily.com) Original source
Imagine strapping on a virtual reality headset and 'walking' through a long-gone neighborhood in your city -- seeing the streets and buildings as they appeared decades ago. That's a very real possibility now that researchers have developed a method to create 3D digital models of historic neighborhoods using machine learning and historic Sanborn Fire Insurance maps.
Published NeuWS camera answers 'holy grail problem' in optical imaging (via sciencedaily.com) Original source
Engineers have demonstrated full-motion video camera technology that can 'see' through light-scattering media. The research could potentially be used in cameras that peer through fog, smoke, driving rain, murky water and parts of the body that hide tumors and other lesions.
Published 'Electronic skin' from bio-friendly materials can track human vital signs with ultrahigh precision (via sciencedaily.com) Original source
Researchers have used materials inspired by molecular gastronomy to create smart wearables that surpassed similar devices in terms of strain sensitivity. They integrated graphene into seaweed to create nanocomposite microcapsules for highly tunable and sustainable epidermal electronics. When assembled into networks, the tiny capsules can record muscular, breathing, pulse, and blood pressure measurements in real-time with ultrahigh precision.
Published Researchers make a quantum computing leap with a magnetic twist (via sciencedaily.com) Original source
Scientists and engineers have announced a significant advancement in developing fault-tolerant qubits for quantum computing. In a pair of articles, they report that, in experiments with flakes of semiconductor materials -- each only a single layer of atoms thick -- they detected signatures of 'fractional quantum anomalous Hall' (FQAH) states. The team's discoveries mark a first and promising step in constructing a type of fault-tolerant qubit because FQAH states can host anyons -- strange 'quasiparticles' that have only a fraction of an electron's charge. Some types of anyons can be used to make what are called 'topologically protected' qubits, which are stable against any small, local disturbances.