Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Environmental: Wildfires
Published Chemistry researchers modify solar technology to produce a less harmful greenhouse gas



Researchers are using semiconductors to harvest and convert the sun's energy into high-energy compounds that have the potential to produce environmentally-friendly fuels.
Published Wound treatment gel fights the battle against antibacterial resistance



Polymer-based hydrogels are used to treat skin ailments and in tissue engineering because of their ability to retain water, deliver drugs into wounds, and biodegrade. However, they are complicated to manufacture and not very resilient to external forces like rubbing against clothing, sheets, or wound dressings. Scientists have now created a hydrogel enhanced with the amino acid polylysine and blood plasma that is easier to synthesize, contains natural antibiotic properties, and promotes cell growth.
Published Researchers discover dual topological phases in an intrinsic monolayer crystal



An international team working with single-atom thick crystals found TaIrTe4's transition between the two distinct topological states of insulation and conduction. The material exhibited zero electrical conductivity within its interior, while its boundaries remain conductive. The team's investigation determined that the two topological states stem from disparate origins. The novel properties can serve as a promising platform for exploring exotic quantum phases and electromagnetism.
Published Cellphone compass can measure tiny concentrations of compounds important for human health



Nearly every modern cellphone has a built-in compass, or magnetometer, that detects the direction of Earth's magnetic field, providing critical information for navigation. Now a team of researchers has developed a technique that uses an ordinary cellphone magnetometer for an entirely different purpose -- to measure the concentration of glucose, a marker for diabetes, to high accuracy.
Published Researchers produce grafts that replicate the human ear



Using state-of-the-art tissue engineering techniques and a 3D printer, researchers have assembled a replica of an adult human ear that looks and feels natural. The study offers the promise of grafts with well-defined anatomy and the correct biomechanical properties for those who are born with a congenital malformation or who lose an ear later in life.
Published New approach to monitoring freshwater quality can identify sources of pollution, and predict their effects



Analysing the diversity of organic compounds dissolved in freshwater provides a reliable measure of ecosystem health, say scientists.
Published Revolutionary biomimetic olfactory chips to enable advanced gas sensing and odor detection



A research team has addressed the long-standing challenge of creating artificial olfactory sensors with arrays of diverse high-performance gas sensors. Their newly developed biomimetic olfactory chips (BOC) are able to integrate nanotube sensor arrays on nanoporous substrates with up to 10,000 individually addressable gas sensors per chip, a configuration that is similar to how olfaction works for humans and other animals.
Published Artificial reef designed by MIT engineers could protect marine life, reduce storm damage



Engineers designed an 'architected' reef that can mimic the wave-buffering effects of natural reefs while providing pockets for marine life. The sustainable and cost-saving structure could dissipate more than 95 percent of incoming wave energy using a small fraction of the material normally needed.
Published Robot, can you say 'cheese'?



What would you do if you walked up to a robot with a human-like head and it smiled at you first? You'd likely smile back and perhaps feel the two of you were genuinely interacting. But how does a robot know how to do this? Or a better question, how does it know to get you to smile back?
Published Researchers create biocompatible nanoparticles to enhance systemic delivery of cancer immunotherapy



Researchers are enhancing immunotherapy effects against malignant tumors by developing and validating patent-ending poly (lactic-co-glycolic acid), or PLGA, nanoparticles modified with adenosine triphosphate, or ATP.
Published New method to measure entropy production on the nanoscale



Entropy, the amount of molecular disorder, is produced in several systems but cannot be measured directly. A new equation sheds new light on how entropy is produced on a very short time scale in laser excited materials.
Published Silicon spikes take out 96% of virus particles



An international research team has designed and manufactured a virus-killing surface that could help control disease spread in hospitals, labs and other high-risk environments.
Published Pushing back the limits of optical imaging by processing trillions of frames per second



Pushing for a higher speed isn't just for athletes. Researchers, too, can achieve such feats with their discoveries. A new device called SCARF (for swept-coded aperture real-time femtophotography) can capture transient absorption in a semiconductor and ultrafast demagnetization of a metal alloy. This new method will help push forward the frontiers of knowledge in a wide range of fields, including modern physics, biology, chemistry, materials science, and engineering.
Published Caller ID of the sea: Tagging whale communication and behavior



Biologists use a novel method of simultaneous acoustic tagging to gain insights into the link between whale communication and behavior
Published Unintended consequences of fire suppression



A new study reveals how fire suppression ensures that wildfires will burn under extreme conditions at high severity, exacerbating the impacts of climate change and fuel accumulation.
Published Bioelectronic mesh capable of growing with cardiac tissues for comprehensive heart monitoring



A team of engineers has recently built a tissue-like bioelectronic mesh system integrated with an array of atom-thin graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue. This tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart's mechanical and electrical functions change during the developmental process. The new device is a boon for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.
Published Researchers take major step toward developing next-generation solar cells



Engineers have discovered a new way to manufacture solar cells using perovskite semiconductors. It could lead to lower-cost, more efficient systems for powering homes, cars, boats and drones.
Published Revolutionizing hydrogen production: Economical and efficient solutions unveiled



Scientists introduce superaerophobic three-dimensional nickel nanostructured catalysts for accelerated water electrolysis.
Published Physicists develop modeling software to diagnose serious diseases



Researchers have recently published FreeDTS -- a shared software package designed to model and study biological membranes at the mesoscale -- the scale 'in between' the larger macro level and smaller micro level. This software fills an important missing software among the available biomolecular modeling tools and enables modeling and understanding of many different biological processes involving the cellular membranes e.g. cell division.
Published High-resolution brain created with 3D printer



A 3D-printed 'brain phantom' has been developed, which is modeled on the structure of brain fibers and can be imaged using a special variant of magnetic resonance imaging (dMRI). The scientific team has now shown in a study, these brain models can be used to advance research into neurodegenerative diseases such as Alzheimer's, Parkinson's and multiple sclerosis.